Master Module MMPW03 - Computational Geodynamics

Prof. Dr. S. Sobolev
PD Dr. M. Riedel

= last modified: March 3, 2017 =


This teaching module provides an overview of our current understanding of the dynamic forces that drive Earth's evolution by linking seismic observations and mantle mineral properties with geodynamic processes.
Based on geophysical fundamentals (conservation of energy, mass, and momentum, viscous mantle convection, viscoelastic deformation of the lithosphere, effects of phase transitions), numerical methods will be presented and explained (finite differences, finite elements, and spectral methods) that provide versatile modeling tools to study the non-linearly linked processes of plate tectonics and deep mantle convection. Using available "public domain" software (CIG repository), all participants should become able at the end to solve typical geodynamic problems (e.g. calculation of lithosphere geotherm or of convective mantle heat flow).
The module examination consists of a written homework on an assigned numerical problem set (in MATLAB), that has to be solved within 6 weeks after finishing of the course. Successful completion will give 6 ECTS.


Block Course, March 6-14, 2017

Lectures, Tutorials Masterstudiengang
2.25.D.2.02 (Computer Pool, Campus Golm, Haus 25) Sobolev, Riedel & colleagues
(GFZ Section 2.5)


Teaching Schedule

Date Time Topics Infos
06.03.17 10.15 - 11.45 Uhr Introduction, historical notes and overview of major challenges in solid Earth dynamics Sobolev
13.00 - 14.30 Uhr Working with Linux, MacOSX and MATLAB (MathWorks TechDocs online) Riedel (intro_matlab.pdf, mlintro.pdf, Euler.m)
14.45 - 16.15 Uhr Cooling of an isothermal Earth (1D heat conduction equation) Riedel (earthage.pdf, heat1D_complete.m, additional reading)
07.03.17 09.15 - 10.45 Uhr Physical background: stress, strain, conservation laws, rheology Sobolev
11.00 - 12.30 Uhr Overview of numerical methods in geodynamics Sobolev
13.30 - 15.00 Uhr FD methods to solve 1D partial differential equations (MATLAB) Riedel (FD_methods1D.pdf, heat1D_BTCS_complete.m, heat1D_CN.m, cranknicholson.m, cranknicholson.pdf)
15.15 - 16.45 Uhr FD methods to solve 2D partial differential equations (MATLAB) Riedel (FD_methods2D.pdf, heat2D_explicit_complete.m, stability_analysis.pdf)
08.03.17 09.15 - 10.45 Uhr Global geodynamic models - towards modeling plate tectonics Sobolev
11.00 - 12.30 Uhr Beyond plate tectonics: plumes, large igneous provinces and mass extinctions Sobolev
13.30 - 15.00 Uhr FD methods to solve macroscopic advection & modeling of subduction (MATLAB) Riedel (FD_advection.pdf, advection_ftcs_complete.m, temspol.pdf,
15.15 - 16.45 Uhr FE methods to solve partial differential equations (MATLAB) Riedel (FE_methods_1D.pdf)
09.03.17 09.15 - 10.45 Uhr Modeling of key plate-tectonic processes (I): Rifting, Continental break-up, Transform faults Sobolev
11.00 - 12.30 Uhr Modeling of key plate-tectonic processes (II): Subduction, and subduction orogeny Sobolev
13.30 - 15.00 Uhr The open code "ASPECT", part I (Introduction) Osei Tutu, Bredow (ASPECT-tutorial-2017.pdf)
15.15 - 16.45 Uhr The open code "ASPECT", part II (Tutorial and Applications)
10.03.17 09.15 - 10.45 Uhr Subduction processes in high resolution Sobolev
11.00 - 12.30 Uhr Earthquake Physics and Modeling Sobolev
13.30 - 15.00 Uhr Lithospheric strength profiles and application to extensional tectonics Brune
15.15 - 16.45 Uhr Tsunamis: Physics and Numerical Modeling Babeyko
13.03.17 09.15 - 10.45 Uhr Using public domain software to model thermal convection in the Earth's mantle (the Rayleigh-Benard instability) Riedel (intro_citcom.pdf, Benchmark1989.pdf, some movie files, additional reading)
11.00 - 12.30 Uhr Introduction to Homework Assignment Riedel (intro_homework.pdf, homework.pdf, additional reading)
15.00 - 16.30 Uhr Earth Evolution and Dynamics: The last half billion years (Guest lecture, GFZ Telegrafenberg, Building H) Prof. Dr. T. Torsvik (University of Oslo)
14.03.17 10.00 - 18.00 Uhr Visit to Section 2.5 Geodynamic Modeling at GFZ Potsdam Sobolev and group members


Recommended Textbooks

D. L. Turcotte and G. Schubert (2014), Geodynamics (3rd ed.), Cambridge University Press, Cambridge (info here).

T. Gerya (2009), Introduction to Numerical Geodynamic Modeling, Cambridge University Press, Cambridge (info here).

Please send comments to