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S U M M A R Y  
The microstructural development during nucleation and growth processes is studied 
numerically. Most of the studies are for the simple case of constant nucleation and 
growth rates, but a brief discussion is made of the effect of time-dependent nucleation 
and growth. A 3-D code is used which accounts for not only the nucleation and growth 
of individual new grains, but also the effects of grain impingement, and which allows 
for the study of both homogeneous and heterogeneous nucleation. 

The microstructures are characterized by the grain-size distribution (GSD) and the 
cluster-size distribution (CSD). In the case of homogeneous nucleation, the development 
of GSD and CSD can be scaled using the Avrami time zAV and Avrami length tiAv, 
which are related to the nucleation and growth rates. Both scaling constants have a 
simple physical meaning: the average grain size after the completion of the phase 
transformation is given by tiAv, and the transformation half-time is approximately equal 
to zAV. The formation of a continuous chain of new-phase grains (percolation transition) 
is observed at -30 per cent transformation degree, and the geometry of the largest 
cluster near the percolation threshold has fractal characteristics with a fractal dimension 
of - 2.5. The presence of preferred sites of nucleation (heterogeneous nucleation), such 
as grain boundaries, significantly modifies the microstructures when the spacing of 
nucleation sites is much larger than the Avrami length, the main effects being a reduced 
percolation threshold and an elongate grain shape. Some applications to the olivine- 
spinel transformation in subducting slabs and to the crystallization in a hypothetical 
magma ocean are discussed. 
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1 INTRODUCTION 

Various first-order phase transformations play a crucial role 
in the dynamics and evolution of the Earth. They include 
phase transformations in subducting slabs, and crystallization 
in a hypothetical magma ocean. Understanding the micro- 
structural development during a first-order phase transform- 
ation is important because the effects of a phase transformation 
on several physical processes depend critically on micro- 
structures. For example, the effects of a phase transformation 
on rheological properties are determined largely by the degree 
of grain-size reduction and the connectivity of fine-grained 
new phases (Rubie 1984; Kirby 1985). The processes of frac- 
tional crystallization and the formation of chemical stratifi- 
cation depend on the size of crystallized grains and their 
spatial connectivity (Tonks & Melosh 1990; Abe 1993). 

Although some of the microstructural developments can be 
investigated through laboratory studies, application of labora- 
tory results to  Earth processes is not straightforward because 
the time scales of the two situations differ significantly. Thus 

a theoretical understanding of the basic physics, particularly 
of the time and spatial scaling laws, is critical in this area. 

In order to describe the overall transition, the recombination 
of nucleation and growth is accomplished by a statistical model 
originally formulated by Johnson & Mehl (1939), Avrami 
(1939, 1940, 1941) and Kolmogorov (1937) and afterwards 
often termed the JMAK model. The assumptions of the model 
are as follows. At initial time, infinitesimally small nuclei of 
the stable phase are randomly produced at a constant rate I" 
per unit volume throughout the metastable matrix. Once 
formed, the nuclei grow isotropically with a constant interphase 
boundary velocity (growth velocity) Y until growth is impeded 
by impingement with neighbouring growing nuclei, at which 
point growth at  the impinged interface ceases. The process 
finally terminates when all the new grains are completely 
surrounded by other product phase grains. Later refinements 
of the model take into account the presence of preferred 
nucleation sites within the metastable starting phase (Cahn 
1956) as well as a possible time evolution of the nucleation 
and growth rates (Kirkpatrick 1976). Both extensions are 

0 1996 RAS 397 



398 M .  R .  Riedel and S. Knrato 

important because they introduce the effects of heterogeneity 
in space and time into the JMAK model. 

In the present paper, we first formulate a system of ordinary 
differential equations that describes nucleation and growth 
processes under time-varying P, T conditions on a mesoscopic 
scale. I t  is essentially analogous to the integral formulation of 
Kirkpatrick (1976), but is easier to handle in numerical calcu- 
lations. We then use a 3-D computer simulation algorithm for 
the computation of the microstructural properties of the JMAK 
model. The variables used to characterize the microstructure 
are the number of isolated new-phase grains (with a grain-size 
distribution GSD) and the number of isolated new-phase 
aggregates, termed 'clusters' (with a cluster-size distribution 
CSD). Each cluster consists of several different impinged grains 
(at least of one single grain in each cluster). 

The program code is able to account for changes in 
supersaturation during the transformation as well as for 
the presence of preferred nucleation sites, and is hence not 
restricted lo the frequently considered case of homogeneous 
conditions both in space and time (Mahin, Hanson & Morris 
1980; Orgzall & Lorenz 1988). It is further used to  demonstrate 
the type of modifications to be expected with increasing degree 
of heterogeneity due to grain boundary nucleated reactions. 

The coupling between transformation kinetics and varying 
P, T conditions is taken into account self-consistently, unlike 
in previous studies which use semi-empirical ansatz functions 
for nucleation and growth rates (Saetre, Hunderi & Nes 1986; 
Furu, Marthinsen & Nes 1990) to calculate the grain-size 
distributions in the JMAK model. Here, the program code is 
able to include any local change in the P, T conditions due to 
the first-order phase transformation itself. Finally we discuss 
some geophysical implications of the results. 

2 FORMULATION OF THE MODEL 

If a homogeneous reactant phase tl becomes metastable due 
to a change in pressure or temperature, nuclei of the new 
(stable) phase fi  arise randomly both in time and space. 
According to the classical nucleation theory (e.g. Christian 
1965), the continuity equation for the number of spherical 
nuclei n(r, t )  with radius r at time t is given by 

&(r, t )  a 
at  dr + - [Y(r,  t)n(r, t)] = 0 

The nucleation source term I"( t )  enters the boundary condition 
for n(r, t )  at r = 0 via 

(2)  
Neglecting any transient stage of nucleation, the time develop- 
ment of n(r, t )  is entirely prescribed by the deterministic growth 
velocity Y of critical nuclei arising with mean nucleation rate 
I" per unit volume. 

The degree of transformation x3., follows from the radial 
distribution function n(r, t )  by means of 

P ( t )  = Y(0, t)n(O, t ) .  

(3) 

(Kolmogorov 1937), and obeys, for constant Y, I" ,  the 
well-known relationship 

(4) 

More generally, for time-dependent nucleation and growth 
rates "(t) and Y ( t ) ,  eqs (1)-(3) may be substituted by the 
following set of ordinary differential equations (see Appendix A): 

d 
dt 

d 

-X,,(t) = 4Y(t)X,,(t), ( 5 4  

zXz.,(t)= nY(t)X,-,(t), (5b) 

d 
-Xl-D(t) = 2Y(t)X,,(t), ( 5 4  d t  

d 
~ XO.,( t )  = I"( t )  , (5d) dt 

where the following variables are defined in terms of the 
extended volume concept introduced by Avrami (1939, 1940, 
1941): 

X3. , ( t )  = Lrn -r"n(r, : 
r 
j: 

Xo.D( t )  = lm n(r, t )  dr 

t )  dr total grain volume, ( 6 4  

X2-,( t )  = 7crzn(r, t )  dr total grain area, ( 6b) 

XI-,( t )  = 2rn(r, t )  dr total grain diameter, ( 6 4  

(6d) number of grains. 

Taking into account the grain impingement in a statistically 
homogeneous medium, the transformed volume fraction in 
the real volume is given using the general relationship (see 
Appendix A) 

x,-,(t) = 1 - exp[-X3-,(t)]. (7) 
Equation set (5)  is equivalent to Kirkpatrick's formula 

(Kirkpatrick 1976) 

This equation is derived by neglecting any transient phen- 
omena in nucleation and for an infinitesimally small critical 
nucleus size; both these assumptions seem to be well satisfied 
in any geological or geophysical systems of interest, since 
the considered time- and length-scales are many orders of 
magnitude larger than the relevant values for the neglected 
microscopic processes (the time lag for reaching steady-state 
nucleation is typically a few seconds in liquids, and the critical 
nucleus size is generally in the submicron range). 

It is well established that the JMAK model has an exact 
dimensional scaling which follows from the observation that 
I" (dimension K 3 T - '  i n 3-D space) and Y (dimension LT-') 
permit the definition of a natural time-scale (Axe & Yamada 
1986; Brandeis & Jaupart 1987) 

z A " =  [PY3]-"4 (9) 

6," = [I"/Y]-1'4. (10) 

and a natural length-scale 

It follows that any function specifying the space-time (r, t )  
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development of the system is universal (i.e. independent of I” 
and Y excepting a possible dimensional scale factor) when 
expressed in natural units (6, t) such that 

r = 6  x dAV and t = t  x z A v .  

We will utilize these natural units throughout our numerical 
computations. More importantly, dimensional scaling permits 
us to relate the microstructure obtained under laboratory 
conditions to the microstructure expected under geological 
time-scales. 

According to the classical Becker-Doring theory, the volume 
nucleation rate is given by 

(e.g. Christian 1965, Chapter lo), where I ,  is a constant, 
AGZom is the activation energy for the formation of a critical 
nucleus, AG,,, is the activation energy for diffusion at  the 
surface of the nucleus, and kT is the thermal energy. AG,*,, is 
dependent on the thermodynamic driving force Ap (free-energy 
difference per unit volume between the different phases) via 

16n u3 
AGZom = - 

3 [Ap++]’’ 

where u is the interfacial free energy and E is the strain energy 
produced by the lattice misfit. The growth mechanism is often 
rate-controlled by the incorporation of the atomic units into 
the moving interface, yielding an interface-controlled growth 
rate according to 

Y = YoT exp [ - AGact T ]  {I - exp (- s)} . 

As an illustration, both functions are shown in Fig. 1 for the 
case of the a -+ /I transformation of olivine, the most abundant 
mineral in the upper mantle of the Earth. 

In the case of grain-boundary nucleated reactions (i.e. hetero- 
geneous nucleation) at a nucleation rate IB (dimension L-’T-’), 
it is useful to consider, in addition to zAv and aAv, the 
corresponding 2-D scaling constants 

(14) 

(15) 

t2-D A” - - [l” Y’] ~ 1’3 

and 

di: = [ P / Y ]  - l’3, 

where (6%:)’ is the order of the mean grain area at the grain 
boundaries (in the sense of a 2-D cross-section), and 7%: is 
approximately equal to the transformation half-time along 
these grain boundaries. 

3 MICROSTRUCTURE SIMULATION 

In order to obtain an integral solution for the time dependence 
of the mean grain-size and transformed volume fraction, it is 
sufficient to  solve equation set ( 5 )  with some suitable equation 
expressing the time evolution of P and T, respectively (Hort 
& Spohn 1991; DaDler et al. 1993). In the constant-P, T case, 
of course, the well-known analytical expressions like eq. (4) 

While in principle it would be ideal to employ analytical 
solutions to predict the microstructural development, such 
solutions are unavailable for even the simplest constant-P, T 
case, with a few minor exceptions (e.g. Sekimoto 1986). Even 

apply. 

if a n  approximate solution to eq. ( 1 )  could be found (e.g. 
Solomatov & Stevenson 1993), there still remains the unsolved 
problem posed by the mutual impingement of different crystals, 
which is itself an intrinsic stochastic problem. 

Given these difficulties, computer simulation is required to 
close the gap between natural microstructures and those pre- 
dicted by the few exact solutions to  eq. ( I ) .  In order to make 
use of large-scale computer simulation algorithms, we have 
mapped the evolving microstructure onto a discrete lattice 
(Gawlinski & Stanley 1981). The modelled physical process 
corresponds to the transformation of a continuous cubic body 
with an ‘imaginary covering mesh’ of 512 x 512 x 512 cells 
with applied periodic boundary conditions. In the homo- 
geneous nucleation case, the nuclei are assumed to arise 
randomly, to  be distributed with a specified density, and, 
once formed, to grow isotropically at a constant rate. Each 
nucleation event is stored by its spatial coordinates and time 
of origin. If a growing crystal crosses a lattice point, this point 
is set to  the new phase p, otherwise the point remains 
unchanged (as phase a); the simulation principle is depicted in 
Fig. 2. The microstructures obtained are stored as 16 megabyte 
image files and are subsequently analysed, using a local selec- 
tion algorithm for the determination of the 3-D cluster-size 
distribution (StauKer 1981). A possible time evolution caused 
by changes in supersaturation, produced in turn by changes 
in P and T, is taken into account by means of a fourth-order 
Runge-Kutta solution of the ordinary differential equation 
system ( 5 ) .  The accuracy of the obtained solutions is checked 
( 1 )  by reducing the cube length from 512 to 32 cells, and (2) by 
comparing the solution with known analytical sum rules, for 
example eq. (4). 

A typical sequence of the generated microstructures on 2-D 
sections of the cube during the nucleation and growth process 
is shown in Fig. 3. The characteristic features of Johnson-Mehl 
type microstructures (Mahin et al. 1980) are observed; i.e., the 
surface of contact separating two grains nucleated at  times t ,  
and t ,  with tl < t 2  is a hyperboloid of revolution that is 
symmetric about a line joining the two nucleation sites and is 
convex towards the grain formed first. As a consequence, two- 
sided or one-sided grains (‘caps’) can appear in 2-D sections, 
the latter being due to truncated hyperboloid noses. Since the 
boundary between two grains is always convex towards the 
grain nucleated first, it is possible to  establish the relative 
chronological sequence of the grains appearing in a 2-D section. 

The CSD, contrary to  the GSD, does not distinguish between 
different grains, since it counts impinged crystals as a single 
cluster. It is therefore a measure of impingement or, in terms 
of solidifying multicomponent melts (Brandeis, Jaupart & 
Allegre 1984; Spohn, Hort & Fischer 1988), of the connectivity 
of a growing polycrystalline network in a magma chamber. 

The grain and cluster sizes are represented as the radius 
( R )  of a sphere of equivalent volume, i.e. by 

4n 
3 

volume r - ( R ) 3 .  

Owing to our special simulation algorithm (i.e. the mapping 
of a continuous process onto a discrete lattice), the spatial 
resolution is limited by the spacing between two grid points, 
which is referred to as 1g.s. (grid spacing) throughout this 
paper. The calculated GSDs and CSDs are hence of limited 
accuracy at  small ( R ) .  In these cases, we either avoid the 
uncertain data or attempt to smooth them by using a spline fit. 
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Figure 1. Dimensionless nucleation rate I" and growth rate Y for the olivine + spinel transformation in the mantle transition zone: (a) as a 
function of excess pressure at T =  1073 K; and (b) as a function of undercooling at P = 20.0 GPa, for shape factors q of lo-' and The growth 
rate is normalized by its maximum value and the nucleation rates by the maximum value for the shape factor q = (see Section 5). P,, and 
T, are the equilibrium pressure and temperature, respectively. The chosen kinetic data set is given in Table 2. 

4 CONSTANT N U C L E A T I O N  A N D  
GROWTH RATES: JMAK MODEL 

We have performed 3-D computer simulations for several 
parameter sets. All of them show the same generic behaviour, 
which can be characterized in terms of zAv and hAV. The 
integral transformation behaviour is depicted in Fig. 4(a) for 
0 _< t I zAv. It is seen that even at  the rather low transformation 
level of x ~ . ~  1~ 2.5 per cent the total number of clusters starts 
t o  deviate from the total grain number, indicating the onset of 
impingement to a measurable extent. 

In order to obtain a quantitative measure for the degree of 
impingement, Markworth ( 1984) introduced (under the simpli- 
fying assumption of only one homogeneous nucleation event 
a t  t = 0) the parameter X ,  = -( 1 - x ~ . ~ ) *  In( 1 - x ~ . ~ )  as the 

net volume fraction of those grains that remain entirely discrete 
(i.e. isolated) at time t .  This parameter reaches a maximum of 
about 11.75 per cent at time t - 0.582,,, when impingement 
between different grains is commonly observed throughout the 
system, and thereafter decreases rapidly to zero. As the trans- 
formation proceeds further there is a steep rise of the maximum 
cluster size, reflecting the percolation of b-phase clusters. At 
the Avrami time t - z,, eventually, far beyond the percolation 
transition, the transformed volume fraction approaches 61.5 
per cent, and the total cluster number is less than 5 per cent 
of the total grain number. 

The corresponding microstructural development is plotted 
in Fig. 5 (GSD) and Fig. 6 (CSD). The GSD has a rectangular 
shape at the beginning of the transformation, which tends to  
become more rounded as the transformation proceeds. The 
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Figure 2. Illustration of the grid used by the simulation algorithm 
and the way in which the nucleation and growth process is mapped 
onto it for the computation of the grain-size and cluster-size 
distribution functions. 

steep decrease at  the large-grain-size edge is mainly a result of 
the assumption that the distribution of nucleation sites is 
homogeneous. At the small-grain-size edge, there appears to 
be a logarithmic increase of grain numbers during the later 
stages of transformation, contrary to the exponential increase 
frequently observed in many experiments (Randolph & Larsen 
1988; Furu et al. 1990). The main reason for this qualitative 
difference seems to be the lack of any competitive grain-growth 
mechanism in the JMAK model. A subsequent grain growth 
process would significantly reduce the number of small grains 
and therefore flatten the small-grain-size edge of the GSD. The 
characteristic topological features of the JMAK microstructure 
(interface area, edge length, and number of faces, edges and 
vertices per unit volume) at completed transformation have 
been studied analytically by Meijering (1953). These values at 
x ~ . ~  = 100 per cent are recompiled in Table 1 in terms of the 
Avrami length hAv. 

The CSD is dominated generally by an exponentially 
decreasing function, after the onset of impingement at approxi- 
mately 2.5 per cent transformation. There is a pronounced 

'shoulder' in the distribution around the maximum grain size, 
as previously observed by Orgzall & Lorenz (1988). This is 
due to the change of the clustering type from 'compact clusters' 
to 'porous clusters' (Fig. 7). Clusters with a mean radius larger 
than the maximum grain size tend to contain increasing 
numbers of inclusions of a-phase, leading to an increasingly 
fragile network of fi-phase grains with increasing mean cluster 
radius. The various large clusters in the system eventually 
become a porous fi-phase framework near the percolation 
transition. The average cluster size ( S )  is given by 

1 "  
( S )  = C nbs2 

1 ' 1  

(Stauffer & Aharony 1992), where n, is the number of clusters 
containing s sites (in the imaginary covering mesh), and N is 
a normalization constant (= XF=l nss). At the percolation 
threshold, (S) apparently reaches co in an infinite system 
(thermodynamic limit). From general percolation theory we 
know that at this point n, decreases following a power law 
with the universal critical exponent t: 

n, - s-' for large s (18) 
(Fisher 1967). In our simulations, the double-logarithmic plot 
of n, against the size of porous clusters shows a power-law 
decrease with an exponent in the range of about 1.8 (Fig. 7). 
This is very close to the known universal value for this 
exponent (equal to 2.18 in 3-D space, Stauffer & Aharony 
1992, p. 52), although owing to the restricted system size this 
value is reproduced only with limited accuracy. The compact 
clusters consist mainly of isolated grains, and their double- 
logarithmic plot changes with x ~ . ~  near to xp,, (i.e. there is no 
universal exponent). 

Owing to the employment of an imaginary covering mesh 
for the microstructural analysis, a dependence of the percolation 
threshold value xp,, on the ratio between the Avrami length 
6," and the basic grid-spacing unit y.s. is observed (Fig. 8), 
which transpires to be a numerical artefact of the algorithm. 
It is found that this threshold varies from approximately 18 
per cent for 6," cc g.s., which corresponds, owing to the grid 
analysis employed here, to the site percolation problem on a 
bcc lattice, up to 30 per cent for continuum percolation with 
6," >> g.s. (Fig. 8). 

In Figs 9 and 10 we show an example of a 3-D-percolating 
cluster and the result of the calculation of its fractal dimension, 
respectively. Above the percolation threshold, the largest 
cluster of []-phase grains (from which the new phase framework 
develops) becomes increasingly compact as a result of the 

Table 1. Characteristic mean quantities of the grain-size distribution in the 3-D JMAK 
model (after Meijering 1953). A vertex is a common point of three different interfaces. 

4.559 l/Si,, 
5.053 1 IS!,, 

t.ot,al edge length per unit volurtic. 
t,otal number of vert,ices per unit volume 

average intrrface arra of a crystal 
avc'rage edgr Icngth of a crystal 15.26 ha,, 
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Figure 4. The scaled time dependence of the total number of grains and clusters during the phase transformation for (a) homogeneous and (b) 
heterogeneous nucleation, see Figs 3 and 11. The thick solid line shows the size (spherical averaged radius) of the largest cluster in the system in 
units of aAV. Impingement starts at a transformation degree in the range of x3.0 - 2.5-12.2 per cent (a) and x ~ - ~  - 0.35-3.0 per cent (b). The thin 
solid line in (b) shows the thick line of (a) for comparism. At homogeneous nucleation, the product phase percolates at x ~ . ~  - 30 per cent. 

on-going phase transformation. The 8-phase interconnectivity 
within the cluster continuously increases, while the number of 
a-phase inclusions decreases with x ~ . ~  (> xpe,). This process 
can be considered in the reverse direction as well. Starting 
from a compact 8-phase polycrystal at x ~ . ~ =  100 per cent, 
then, as x3.,, decreases towards xp,,, the internal inclusions in 
the largest cluster become increasingly large, and develop a 
distribution in their sizes. The largest cluster at a point slightly 
above the percolation threshold is only homogeneous on 
length-scales much larger than a certain characteristic length- 
scale, referred to as its ‘correlation length’ <, and is rather 
ramified, with inclusions on all scales smaller than 5.  In fact, 
any percolating cluster has afractal topology on scales smaller 
than < (Stauffer & Aharony 1992, p. 67). < is infinite at the 
percolation threshold xpc,, i.e. the largest cluster at this point 
is a pure fractal without internal homogeneous length-scales. 

A quantitative way to study this behaviour is to determine 
the cluster density on different length-scales. Starting from an 

(arbitrary) point inside the cluster, one draws squares of 
increasing size L around it and calculates the mass M ( L )  as a 
function of L. The result of the double-logarithmic plot of M 
versus L shows clearly the separation of two length-scales 
inside the cluster for x ~ . ~  > xper. Whereas on a smaller length- 
scale M ( L )  is a fractal with a fractal dimension of about D = 2.5 
(in good agreement with the numerical results of other authors, 
4. Stauffer & Aharony 1992; Lorenz, Orgzall & Heuer 1993), 
the mass distribution on a larger length-scale shows a ‘regular’ 
bulk behaviour with a constant 8-phase density p(L) = M(L)/L3. 
The crossover length 5 between the two internal length-scales 
of the largest cluster (Fig. 10) is dependent on the transform- 
ation degree x3.,, and vanishes as x ~ - ~ +  100 per cent, where 
the largest cluster covers the whole volume. 

The cluster properties just described hold for any first-order 
phase transition, including solid-melt transitions. It is cam- 
monly known that the change in porosity during crystallization 
is accompanied by a critical change in fluid permeability. 
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Figure 5. Grain-size distribution (GSD) for two different transformation stages (homogeneous nucleation, I" and Y as in Fig. 3): (a) x ~ . ~  = 17 per 
cent, and (b) x ~ . ~  = 100 per cent (completed transformation). The mean grain size in (b) is given either with 0.586," or with 0.646,,, depending on 
the average method (with respect to the radii or to the volume distribution). The solid line shows a fit of the lower edge of the grain-size distribution 
to a logarithmically increasing function of the form L In( 1 + c ( R ) / 6 , , )  with L = 512 and c z 0.128. 

Starting from the discussion presented here, we expect that, in 
particular, the shift of the crossover length ( with the on-going 
transformation after ,&phase percolation will be reflected by a 
systematic change in the permeability of the solid framework 
(cf. Thompson 1991). 

5 HETEROGENEOUS NUCLEATION AT 
G R A I N  BOUNDARIES 

In any solid-solid phase transformation involving nucleation 
and growth, homogeneous nucleation is considered to be an 
adequate model only under idealized conditions. Heterogeneous 
nucleation at grain boundaries has therefore been studied as a 

way to avoid this limitation of the classical JMAK model 
(e.g. Cahn 1956). By introducing the existence of preferred 
nucleation sites into eq. ( l ) ,  the homogeneity in space is lost, 
and the correction of the calculated kinetic mean values with 
the mean-field type equation (7)  is no longer applicable. 
Likewise it is impossible to adopt for this problem the approach 
frequently taken for the study of batch crystallization (Marsh 
1988; Cashman & Marsh 1988; Cashman & Ferry 1988; 
Buyevich & Mansurov 1990) on the basis of an exact or 
approximate solution for the function n(r, t ) ,  often termed the 
crystal size distribution function, because of the unsolved 
impingement problem. To simplify the analysis, heterogeneous 
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Figure 6. Cluster-size distribution (CSD)  for two transformation stages (homogeneous nucleation, I ”  and Y as  in Fig. 3): (a) x ~ . ~  = 2 per cent (at 
the beginning of impingement), and (b) x ~ . ~  = 17 per cent. 

nucleation is frequently only treated by introducing the 
so-called ‘shape factor’ 9 (Christian 1965) according to  

A G L =  v A G ~ L ~ ,  ( 19) 

where AG&, is the activation energy for heterogeneous 
nucleation. q has a typical order of magnitude of 
for solid-solid transformations, depending on the wetting angle 
between the two phases (Christian 1965). However, eq. (19) 
does not account for the spatial distribution of the nucleation 
sites in the host phase and is therefore not very appropriate for 
the study of microstructures during heterogeneous nucleation. 

Instead, we again employ a 3-D simulation to circumvent 

to 

this problem. To achieve this we have modified the nucleation 
routine in such a way that the nucleation events are now 
restricted to preferred grid planes, by dividing the cubic body 
into smaller cells with edge length Lini. The corresponding 
grain-boundary nucleation rate IB is then given by 1 
I*(P,  T )  = P ( P ,  T )  Lin,/3. (20) 

The initial grain size Lini must be at least one order of 
magnitude greater than the resolution of the imaginary cover- 
ing mesh in order to prevent significant (i.e. measurable) 
numerical errors. In all simulations we used values with 
Lini >, 10 g.s. Owing to  the presence of preferred nucleation 
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Figure 7. Double-logarithmic plot of the cluster frequency ns con- 
sisting of s pixels (equal to the cluster volume) near to the percolation 
threshold (homogeneous nucleation, I" and Y as in Fig. 3). The 
clusters with averaged radius larger than the maximum grain size obey 
approximately the generalized scaling assumption of Stauffer & 
Aharony (1992) with a Fisher exponent T 2 1.79. The scatter of the 
data at large cluster sizes is due to the limited system size, and prevents 
a more precise calculation oft (exact value is 2.18 in three dimensions 
according to Stauffer & Ahorony 1992). The slope at small cluster 
sizes (here t E 0.62) is not universal, is .  it varies with x , . ~ .  

sites, the new length-scale Lini was introduced in addition to 
K A V ,  and deviations from the generic scaling properties of the 
JMAK model were anticipated. It was found, however, that 
the microstructural properties appear to be indistinguishable 
from a homogeneous nucleation process if Lini is lower than, 
or of the same order as, aAV. The reason for this is that for a 
homogeneous nucleation process the mean grain size in the 
final stages of transformation is approximately equal to a,, 
(see Table l ) ,  and therefore in each pre-existing cell with edge 
length Lini < hAV only one new phase nucleus is, on average, 
generated during the phase transformation. If the initial grain 
size Lini is much larger than the Avrami length SAV, however, 
significant deviations from the homogeneous case occur, both 
with respect to the average grain size and with respect to  the 
grain-size distribution. This is due to the mutual impingement 
of the grains along the preferred nucleation sites, resulting in 
the growth of elongated grains (Figs lla-e). These micro- 
structural changes are reflected by a considerable broadening 
of the grain-size distribution as the transformation proceeds 

(Fig. 12). The growth of elongate crystals causes a less steep 
decrease at  the large-grain-size edge of the GSD, at the expense 
of a greater number of smaller grains, therefore reducing the 
number of grains with smaller sizes. The mean grain size is 
plotted as a function of LIni/bAv at  50 per cent transition degree 
in Fig. 13. It can be seen that (owing to the growth of elongated 
grains) an increasing L,,,/SAv-ratio is accompanied by an 
increasing mean grain size. The percolation threshold is, as 
intuitively expected, greatly reduced by the presence of pre- 
ferred nucleation sites. The critical volume fraction for perco- 
lation is reduced to as little as 40 per cent of the homogeneous 
case for a ratio of Lin,/aA, z 10 (Fig. 14a). At the same time 
the transformation half-time t,,' is increased according to the 
relationship 

as derived by Cahn (1956). 
Eq. (21) has two limiting cases: 

(1) Lini << 6," (homogeneous nucleation limit): 

(2) Lini >> hAV (elongated crystal growth dominates): 

In 2 Lini 
t l / Z  = TAv- - 

6Av 

The simulation results show a fairly good agreement with these 
analytical limits (Fig. 14b). 

Finally, we redraw the scaled time dependence of the total 
grain and cluster number for the case of a grain-boundary 
nucleated reaction (L,,, = 106,") in Fig. 4( b). The reduction of 
the percolation threshold is accompanied by a much steeper 
increase of the percolation cluster size at this point. This is 
due to an amplification of the ongoing mutual impingement 
along the grain boundaries by the heterogeneous spatial 
structure of the grains in the host phase, which enhances 
the formation of interconnected chains of new-phase grains 
throughout the system volume. The larger the L,,,/GAv-ratio, 
the more pronounced this effect (similar to  the effects of 
percolation threshold reduction and transformation half-time 
increase). 

6 TIME-DEPENDENT NUCLEATION AND 
GROWTH RATES 

In many geological situations, the nucleation and growth of a 
new phase occurs during changing P, T conditions rather than 
at  constant P and T. The thermal and metamorphic evolution 
of a rock undergoing a solid-solid phase transformation in a 
system with time-varying supersaturation will hence be depen- 
dent on the rate laws for nucleation and growth over a certain 
P, T range, and the microstructural evolution is likely to 
reflect these P, T changes. For constant 1' and Y, all the 
microstructure properties are scalable by and aAV as defined 
by eqs (9) and (10). For time-varying P, T conditions, however, 
this scaling is not strictly valid anymore. In order to  obtain 
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Figure 8. The dependence of the critical volume fraction for percolation (percolation threshold) during homogeneous nucleation and growth on 
the 6," to g.s. ratio (g.s. = grid spacing of the underlying imaginary covering mesh). The value of - 30 per cent in the continuum limit (solid 
square) is taken from Pike & Seager (1974). 

their order of magnitude during the transformation, we calcu- 
late zAv and 6," at the beginning (xro = 1 per cent) and near 
to the end ( x ~ - ~  = 99 per cent) of the process. It is assumed 
that the mean grain size of the new phase ranges between the 
hAv values a t  these two limits. 

We give here a brief account of the effect of time-dependent 
nucleation and growth as an application of our kinetic equation 
set ( 5 )  to the olivine -+ spinel transformation in subducting 
slabs at around 400 km depth, based on the JMAK model 
with a grain-boundary nucleated reaction. There have been 
several experimental studies of the kinetics of this transform- 
ation (Sung 1979; Hamaya & Akirnoto 1982; Rubie et al. 1990; 

Fujino & Irifune 1992), and of the equilibrium phase diagram 
(Katsura & Ito 1989; Akaogi, Ito & Navrotsky 1989), which 
together provide a rather well-constrained kinetic parameter 
set (Table 2). As observed previously, owing to P, T variations 
with time, the thermodynamic driving force Ap changes 
during the transformation. Equation set (5)  must therefore be 
appended with a suitable equation for A p ( t ) .  As an example, 
we consider the P, T profile along the coldest part of a 
descending slab with velocities of 4 cm yrC1 and of 10 cm yr-', 
respectively. For the sake of simplicity, we neglect the effects 
of the latent heat release (DaiDler & Yuen 1993) and of the 
strain accommodation (Morris 1992) produced by the phase 

Table 2. Parameter values for the ct + a transformation of Mg,SiO, used in Section 6. The thermal slab model 
is according to McKenzie (1969). 

Cooper & Kohlstedt 1982 
Rubie et al. 1990 
Rubie & Ross 1994 
Akaogi et al. 1989 
Akaogi et al. 1989 
Akaogi et al. I989 
Akaogi et al. 1989 
Fujino & Irifune 1992 * 
Rubie & Ross 1994 

0.6 Jm-' 
4.50 x lo5 J mol-' 
6.1 x m3 mol-' 
7.7 J mol-' K-' 
3.16 x m3 mol-' 
11.0 GPa 
4.05 x m3 mol-' 
1.58 x 10" m s-l I<-' 
1.0 x lo4' m-3 s-' K-' 

slab length L 
slab thicknew I )  
adiabatic compressibility fl, 
mantle density a t  z = 0 
Reynolds number  Re for 4 cm yr-' 
Reynolds number  Re for 10 cm yr-' 
1 it hos phew base t em perat II re 7 i, sr 

'I'urcotte & Schubert 1982 
Turcotte & Schnbert 1982 
Turcotte & Schubert 198'' 
Turcotte & Schubert 1982 
Turcotte & Schubert 1982 
Tiircotte & Schubert 1982 
'hrcot te  XC Schiibert 1982 

1.0 x m 
8.0 x 10+1 n1 
4.3 x GPa-' 
3.3 x g m-3 
42 
105 
1073 r< 

\ 

* Fujino & Irifune observed the growth of small p-spinel aggregates along the margin of a forsterite single crystal. Taking their Fig. 2(a) with the 
result of the phase transformation after 20 min, we obtain as  a lower limit for the spinel growth rate a value of 3.1 x lo-' m 5 - l  at 15.5 G P a  and 
1273 K. This value is used here as a reference point for the determination of 6. 
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Figure 3. Snapshot pictures of the evolving 3-D nucleation 
and growth process using a homogeneous nucleation rate I" = 

2000 events per volume and time step, and a constant growth 
rate Y = 0.2 g.s. (grid spacing unit) per time step (equivalent 
to 6," = 10.76 g.s. and zAv = 53.82 steps): (a) x ~ . ~  = 10 per cent; 
(b) x ~ . ~  = 50 per cent; (c) x ~ . ~  = 100 per cent (completed trans- 
formation). The colours are used to visualize the separated 
grains and have no further meaning. 

Figure 9. 2-D section of the largest cluster at the percolation 
threshold (parameters according to Fig. 3). AH visible grains 
are interconnected in the third dimension and form one single 
large cluster (coloured blue). Its 2-D surface is shown in red. 
The percolation point is determined numerically as the point 
where the largest cluster connects all external cube sides for 
the first time. 
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Figure 11. Snapshot pictures of the evolving 3-D nucleation 
and growth process using a heterogeneous nucleation rate 
I "  = I" 3.33~5,~ (L, , ,  = IOS,,), and a constant growth rate 
Y = 0.2 g.s. per time step (equivalent to 6," = 10.76 g.s. and 
sAv = 53.82 steps): (a) x3.D = 10 per cent; (b) x3.D = 35 per cent; 
(c) x3.,, = 50 per cent; (d)  x3.,, = 85 per cent; (e) xj.,, = 100 per 
cent (completed transformation). The colours are used to 
visualize the separated grains and have no further meaning. 
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Figure 10. Calculation of the fractal dimension of the largest cluster slightly above the critical volume fraction for percolation, using the mass 
count method within a cube of side length L (homogeneous nucleation, I" and Y as in Fig. 3).  The thick line shows the transformed mass M 
(number of transformed pixels) within the cube. The thin line shows the plot of the corresponding mass density MIL3, which is an decreasing 
function of L for a fractal object and a constant for a homogeneous bulk body. The crossover length between both length-scales of the cluster is 
approximately shown by 5 .  

transformation, both of which provide a non-linear feedback 
mechanism to the P, T conditions in the slab. Given these 
simplifications, the pressure varies with depth z according to 
the mantle adiabat 

(24) 
1 

P ( t )  = - - In{1- pogBaz(t)l B, 
(Turcotte & Schubert 1982), where Pa is the adiabatic com- 
pressibility of the mantle, p o  is the mantle density at z = 0, and 
g is the acceleration of gravity. The temperature along the 
minima of the isotherms within the slab is given approximately 
by 

(McKenzie 1969), where L is the slab length, Re is the thermal 
Reynolds number, which is proportional to  the descending 
velocity of the slab, Tbase is the temperature a t  the base of the 
lithosphere, and T,  is a small correction term due to the 

adiabatic heating of the slab. The nucleation and growth rates 
for the olivine -+ spinel transition along this P, T, t path are 
drawn in Fig. 15(a) for the case of a subduction speed of 
4 cm yr-', together with the numerically calculated degree of 
phase transformation. In this case the transformation is 
completed within a very narrow depth interval of less than 
5 km near to 426 km depth, the half-time of transformation is 
approximately equal to the Avrami time of zAV - 50000 years, 
and the mean grain-size is of the order of the Avrami length 
of 6," - 0.5 mm (Table 3). Consequently, hAv/Ltn, has a value 
of -0.2, and the presence of heterogeneous nucleation sites 
has only minor effects on microstructures. 

For a slab with a high descending velocity, for example 
10 cm yr-', the transformation occurs over a much wider 
depth interval of up to 100 km (Fig. 15b) under entirely 
different P, T conditions (Table 3). The result is a much larger 
grain-size reduction of up to four orders in magnitude (starting 
from an initial olivine grain size of -3  mm) in the cold slab 
interior. Since the scaling parameters 6," and T A ~  d o  not 

0 1996 RAS, G J I  125, 3977414 



408 M .  R. Riedel and S .  Karato 

1400 

1200 

g 1000 .- 
2 
0) 800 
0 

600 
a 
E 
3 400 

200 

* 

C 

0 
0 

0.5 

Figure 12. The evolution of the grain-size distribution (GSD) for a grain-boundary nucleated reaction (IB and Y as in Fig. 11). The development 
of a large-grain-size tail to the distribution during the later stages of the transformation is due to the development of elongate grains. 

Table 3. Scaling constants for the olivine --t modified spinel transformation in the mantle transition 
zone occurring in the cool part of a subducting slab (thermodynamic data according to Table 2). 
The 6;: value has a meaning only for x ~ . ~  = I per cent----see text. The slab penetrates into the 
mantle a t  an angle of 45" and olivine is assumed to have an initial mean grain size of L,,, = 3 mm. 

subduct ion velo 

depth in k m  
p in <;Pa 
1' in K 
I" in s-l 
Y7 in 111 s-l 
64, in i n  

6i-e in n i  

T A ? ~  in  years 

4 cm yr-' 

0.01 1 0.99 

424 
14.16 
932 

3.78 x 

4.64 x 

3.80 10-3 

5.62 10-4 

4.72 10+4  

429 
14.33 
935 
1.10 x 10+2 
4.77 x 10-16 
4.56 x 

3.04 x 10+3 

10 cm yr-' 

0.01 I 0.99 

55 1 
18.55 
828 
8.51 Y 10+6 
3.43 x 
1.41 x 
7.33 10-9 

1 1.91 x lo+" 

634 
21.47 
866 

1.18 x 10-20 
5.01 10+7 

1.23 lo-' 

3 . 3  x 10+5 

change very much over this depth range, we expect that they 
again permit an estimate of the mean grain size and the 
transformation half-time. However, at initial transformation 
( x ~ . ~  = 1 per cent), owing to the early impingement of the new- 
phase grains at the pre-existing grain boundaries, the mean 

grain size is further reduced by a factor 

( 2 6 )  6k:/6Av = [ 3 6 A ~ / L i n i ] " ~ ,  

since the typical grain size at the initial stage is given in the 
case SA,<<Lini by 6:; rather than by a,,, as defined by 
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the nucleation process (increasing number of preferred nucleation sites at grain boundaries). The two dashed lines in (b) are drawn according to 
the limits L,,, << 6," [homogeneous nucleation, eq. (22)] and L,,, >> 6," [elongate crystal growth dominates, eq. (23)]. 

eq. (15). This corresponds to a further grain-size reduction of affected by possible heterogeneous nucleation at grain bound- 
up to one order of magnitude. aries because 6," z Lini, where Lini is typically of the 

In the case of a descending velocity of 4 cm yr-', we con- order of several millimetres (Karat0 1984). In contrast, 
clude that the topology of the microstructure is not much 6," << Lini for 10 cm yr-', and the observed grain-size 
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m s - l )  and (b) 10 cm yr-l (units: I" in lo6 m-3  s-' ,  Y in 

reduction leads to a significant change in microstructure 
( fine-grained /I-phase grains formed along cc-phase grain 
boundaries). 

7 DISCUSSION 

The extensions to heterogeneous nucleation (Cahn 1956) and 
time-dependent supersaturation (Kirkpatrick 1976) affect the 
scaling behaviour in different ways. In the case of grain- 
boundary nucleated reactions we have shown that scaling 
is still approximately valid for Lini 5 hAv. With increasing 
Lln, /6Av >> 1 deviations appear, one of the main effects being 
the drastically reduced percolation threshold visible in the 
CSD (Fig. 14a). When temperature and pressure change with 
time, both nucleation and growth rates I and Y change with 
time, and scaling parameters (Avrami time and length) cannot 
be simply used to estimate the time-scale of phase transform- 
ation nor the size of grains after a transformation. However, 
our numerical calculations indicate that, for the considered 
problem of the olivine -+ spinel transformation in subducting 

oceanic lithosphere, some rough estimates of transformation 
grain size (and time) after transformation can still be made 
using the values of hAV and zAV at an early ( x ~ - ~  = 1 per cent) 
and late (x,.,=99 per cent) stage of transformation. The 
reason is as follows. For a slow and warm slab, the transform- 
ation interval is very narrow (Figs 15 and 16) and the time 
dependence of I and Y does not play any significant role. For 
a fast and cold slab, on the other hand, the phase transform- 
ation occurs in a wide depth range through which both I and 
Y change, but the Avrami length defined locally using instan- 
taneous I and Y does not change appreciably with time (see 
Figs 15 and 16). Therefore, using some locally defined Avrami 
length, it is still possible to estimate the grain size after a phase 
transformation. 

As the result, a clear difference is seen between slow 
( 5 4  cm yr-') and fast (2 10 cm yr-') subduction: a slow slab 
appears to produce a relatively large spinel grain size after the 
transformation because the growth rate is high relative to the 
nucleation rate, because of the high temperature. The calculated 
grain size is comparable to the typical olivine grain size in an 
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oceanic lithosphere (a few millimetres, Karato 1984). Thus we 
conclude that a slow slab belongs to the group of hAv - Lini, 
and that the role of pre-existing nucleation sites (heterogeneous 
nucleation) is not very important. 

In fast slabs, a significantly smaller spinel grain size results 
from the much lower temperature at which nucleation and 
growth occur. The original grain size is kinetically reduced by 
up to four orders of magnitude by the phase transformation 
in the cold central portion of the slab (Table 3). Furthermore, 
in addition to this kinetic grain-size reduction, a topological 
grain-size reduction is possible as the consequence of a further 
nucleation mechanism. Owing to the very early impingement 
of the growing spinel grains along the olivine grain boundaries, 
elongate grain growth is likely to be accompanied by secondary 
nucleation at the growing interphase grain boundaries, which 
eventually leads to microstructures with typical grain sizes of 
the order of 6%; rather than of 8,". The result would be a 
further grain-size reduction according to eq. (26). Hence, the 
role of pre-existing heterogeneities in nucleation is important 
for a fast slab. 

We suggest that this result is directly relevant to the instability 
associated with the olivine + spinel transformation, which has 
been proposed as a trigger for deep focus earthquakes (Kirby 
1987; Green & Burnley 1989 Frohlich 1994). As reported by 
Green & Burnley (1989), faulting occurs only in a narrow 
temperature interval. Furthermore, under the conditions of 
instability, lens-shaped regions with a crack-like morphology 
and containing very fine-grained spinels are found. These 
observations are consistent with our results, which indicate 
that a significant grain-size reduction is possible under the 
conditions of fast subduction (low temperatures). 

Another example of interest is the case of a solidifying 
magma chamber (Kirkpatrick 1981; Lofgren 1983; Brandeis 

et al. 1984; Brandeis & Jaupart 1987). Although a crystallizing 
magma is a multicomponent-multiphase system and hence 
cannot be directly analysed with the simple JMAK model, 
one can find some estimate for the peak nucleation rates of 
several minerals precipitating from a supersaturated melt 
(Table 4). The inferred grain size 6," - lo-' m appears to be 
in a good agreement with the observed typical grain size - 

Finally, we comment briefly on the situation in a hypo- 
thetical terrestrial magma ocean. As discussed by Solomatov 
& Stevenson (19931, the presence of crystals has two possible 
consequences: fractional crystallization when the magma ocean 
cannot suspend crystals even at small fractions, and non- 
fractional crystallization when the convection is strong enough 
to prevent any crystal settling. The boundary between the two 
cases is determined mainly by the energetics of the convection, 
but is also dependent on further processes such as the settling 
velocity of crystals (which is in turn dependent on both GSD 
und CSD). The interconnectivity of the growing grains plays a 
crucial role with respect to the settling kinetics. A (fractal) 
skeleton solid will sink significantly faster than isolated 
(compact) grains. This is likely to result in a different mode of 
chemical layering at the bottom viscous boundary layer (Tonks 
& Melosh 1990). As we have shown, crystal impingement 
begins at a transformed volume fraction as low as 2.5 per cent 
(Fig. 4a), and crystal settling is accompanied by skeleton 
formation. The settling velocity, usually given in a viscous fluid 
by Stokes' law as proportional to the squared crystal radius, 
then has to be modified in a suitable way to account for the 
penetration of a fluid through a porous body rather than for 
the frictional forces of a falling sphere in a laminar flow. At 
the critical melt fraction & - 40 per cent, the viscosity of the 
partial melt rapidly increases by up to 19 orders of magnitude 

m-- lO-'m in crystallized igneous rocks. 
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Crystal 

Quartz 

Alkali 
feldspar 

I'lagio- 
claw 

Table 4. Scaling constants for a solidifying magma chamber with different melt compositions (water content) 
in which there is nucleation of quartz, alkaline feldspars, and plagioclase [data taken from Brandeis et al. 
(1984), p. 10 1741. The undercooling varies in the range of AT= 200-450°C and was held constant during 
the experiments for 24 hours 

Water Nucleation rate Growth rate Avrami length Avrami t.inie 
content I" in ~ n - ~  s-' Y in rn s-l 6 ~ , ,  in rn T A ~  in s 

3.5per cent, N lo-:' 2 x 10-11 1.19 x 10-2 5.95 x 10' 
2 x 10-1' 1.19 x 10-2 5.95 x 108 

12 per cent - 10-3 

3.5 per cent - 10-4 10-9 5.62 x lo-' 5.62 107 

12 per cent - 10-3 3 x lo-" 1.32 x 10-2 4.39 x 10s 

6.5 per cent N 10-3 5 x 10-10 2.66 x lo-' 5.32 x 10' 
12 per cent - 10-3 3 x 10-11 1.32 x lo-' 4.39 x 108 

N 10-3 6.5 per cent 

10-10 1.78 x 1.78 x 10' 

6.5per cent - 10-10 1.78 x lo-' 1.78 x lo8 

i1.5 per cent - lo-' lo-" 1.78 x 10-2 1.78 x 10'' 

(Abe 1993). However, this kind of percolation transition takes 
place under entirely different conditions (vigorous convection, 
gravitational and buoyancy forces) and hence cannot be readily 
analysed by a simple nucleation and growth process, since the 
Avrami analysis assumes that the new-phase crystals d o  not 
move. 

A serious limitation of any nucleation and growth model, 
particularly for the description of polymorphic solid-solid 
phase transformations, is the absence of the subsequent grain 
growth stage. This is a consequence of the lack of a grain- 
boundary energy term in the basic equations. However, using 
a numerical simulation procedure, it is easy to append a 
suitable algorithm for this purpose. In a large ensemble of 
grains of different sizes, the individual grains will grow or 
shrink with different velocities. As a first approximation, one 
replaces the individual velocity of a grain with the mean 
velocity of all grains of the same size R (Atkinson 1988; Ryum 
& Hunderi 1989). The mean velocity of a grain of size R is 
then given by uR - (R-I - Re'), where Rc(t) is a scaling grain 
size of the ongoing drift process (i.e. the with R,-( t )  normalized 
GSD does not change with time). The result is an exhaustion 
of smaller grains and a shift of the mean grain size towards 
larger values. The time-scale of this process is completely 
different from zAv. Contrary to the latter, it is not governed 
by the degree of metastability but is solely related to  the 
surface area to volume ratio in the grain-growing polycrystal 
and to the mobility of atomic units in the solid phase. Typically, 
it is several orders of magnitude larger than zAv. Thus as a 
first approximation it is sensible to compute the grain-size 
distribution in a solid-solid transformation on the basis of a 
pure nucleation and growth model. The resultant GSD serves 
as a reference for further (slow) modifications resulting from 
grain growth. In this way, it should be possible to calculate 
the grain-size development for a realistic P, T profile in a 
subducting slab. The strength of a slab at greater depths will 
be affected by various phase transformations in the transition 
zone of the Earth's mantle. Grain-size reduction is likely to 
occur, which will lead to rheological softening of the slab. The 
degree of softening depends on the amount of grain-size 
reduction, and hence on the kinetics of nucleation and growth. 
Work on this particular problem is currently in progress. 

ACKNOWLEDGMENTS 

This research was supported by the Deutsche Forschungs- 
gemeinschaft and the National Science Foundation, grant 
EAR-9206683 (to SK). Part of this work was performed during 
M R R s  stay at the University of Minnesota and the Minnesota 
Supercomputer Institute in spring 1992. One author (MRR) 
wishes to thank Prof. D.A. Yuen (Minnesota Supercomputer 
Institute) for his support and continuous interest in the 
considered problem. 

We thank D. C. Rubie and S. J. Covey-Crump for critical 
reviews. 

REFERENCES 

Abe, Y., 1993. Thermal evolution and chemical differentiation of the 
terrestrial magma ocean, in Euolution of the Earth and Planets, 
pp. 41-54, eds Takahashi, E., Jeanloz, R. & Rubie, D., Geophys. 
Monograph 74, American Geophysical Union, Washington, DC. 

Akaogi, M., Ito, E. & Navrotsky, A,, 1989. Olivine-modified spinel- 
spinel transitions in the system Mg,SiO,-Fe,SiO,: calorimetric 
measurements, thermochemical calculation, and geophysical impli- 
cation, J .  geophys. Res. B, 94, 15 671-15 685. 

Atkinson, H.V., 1988. Theories of normal grain growth in pure single 
phase systems, Acta metall., 36, 469-491. 

Avrami, M., 1939. Kinetics of phase change. 1. General theory, J .  Chem. 

Avrami, M., 1940. Kinetics of phase change. 11. Transformation-time 
relations for random distribution of nuclei, J.  Chem. Phys., 8, 
212-224. 

Avrami, M., 1941. Kinetics of phase change. 111. Granulations, phase 
change, and microstructure, J .  Chem. Phys., 9, 177-184. 

Axe, J.D. & Yamada, Y., 1986. Scaling relations for grain auto- 
correlation functions during nucleation and growth, Phys. Reo. B, 
34, 1599-1606. 

Brandeis, G. & Jaupart, C., 1987. The kinetics of nucleation and 
crystal growth and scaling laws for magmatic crystallization, Contrih. 
Mineral. Petrol., 96, 24-34. 

Brandeis, G., Jaupart, C. & Allegre, C.J., 1984. Nucleation, crystal 
growth and the thermal regime of cooling magmas, J .  geophys. 
Res. B, 89, 10 161-10 177. 

Buyevich, Yu.A. & Mansurov, V.V., 1990. Kinetics of the intermediate 
stage of phase transition in batch crystallization, J.  Crystal Growth, 

Phys., 7, 1103--1112. 

104, 861-867. 

0 1996 RAS, GJI 125, 397-414 



Microstructural development 413 

Cahn, J.W., 1956. The kinetics of grain boundary nucleated reactions, 
Acta metall., 4, 449-459. 

Cashman, K.V. & Ferry, J.M., 1988. Crystal size distribution (CSD) 
in rocks and the kinetics and dynamics of crystallization. 111. 
Metamorphic crystallization, Contrib. Mineral. Petrol., 99, 401-415. 

Cashman, K.V. & Marsh, B.D., 1988. Crystal size distribution (CSD) 
in rocks and the kinetics and dynamic of crystallization. 11. 
Makaopuhi lava lake, Contrib. Mineral. Petrol., 99, 292-305. 

Christian, J.W., 1965. The theory of transformations in metals and 
allqys, Pergamon Press, New York, NY. 

Cooper, R.F. & Kohlstedt, D.L., 1982. Interfacial energies in the 
olivine-basalt system, in High Pressure Research in Geophysics, 
pp. 217-228, eds Akimoto, S. & Manghnani, M.H., Reidel, 
Dordrecht. 

DaBler, R. & Yuen, D.A., 1993. The effects of phase transition kinetics 
on subducting slabs, Geophys. Res. Lett., 20, 2603 --2606. 

DaBler, R., Yuen, D.A., Karato, S. & Riedel, M.R., 1993. Consequences 
of thermal-kinetic coupling on the phase boundaries of subducting 
slabs, Research Report UMSI 9311 52, Minnesota Supercomputer 
Institute. 

Dowty, E., 1980. Crystal growth and nucleation theory and the 
numerical simulation of igneous crystallization, in Physics of 
Magmatic Processes, pp. 41 9-485, ed. Hargraves, R.B., Princeton 
University Press, Princeton, NJ. 

Fisher, M.E., 1967. The theory of condensation and the critical point, 
Physics, 3, 255-283. 

Frohlich, C., 1994. A break in the deep, Nature, 368, 100-101. 
Fujino, K. & Irifune, T., 1992. TEM studies on the olivine to modified 

spinel transformation in Mg,SiO,, in High Pressure Research: 
Application to  Earth and Planetary Sciences, pp. 237-243, eds 
Syono, Y. & Manghnani, M.H., Terra Sci. Pub., Am. geophys. Un., 
Washington, DC. 

Furu, T., Marthinsen, K. & Nes, E., 1990. Modelling recrystallization, 
Mater. Sci. Technol., 6, 1093- 1102. 

Gawlinski, E.T. & Stanley, H.E., 1981. Continuum percolation in two 
dimensions: Monte Carlo tests of scaling and universality of non- 
interacting discs, J.  Phys. A: Math. Gen., 14, L291LL299. 

Green, 11, H.W. & Burnley, P.C., 1989. A new self-organizing mech- 
anism for deep-focus earthquakes, Nature, 341, 733-737. 

Hamaya, N. & Akimoto, S., 1982. Experimental investigation on the 
mechanism of olivine + spinel transformation: growth of single 
crystal spinel from single crystal olivine in Ni,SiO,, in High Pressure 
Research in Geophysics, pp. 373-389, eds Akimoto, S. & Manghnani, 
M.H., Reidel, Dordrecht. 

Hort, M. & Spohn, T., 1991. Numerical simulation of the crystallization 
of multicomponent melts in the thin dikes or sills 2. Effects of 
heterocatalytic nucleation and composition, J .  geophys. Res. B, 

Johnson, W.A. & Mehl, R.F., 1939. Reaction kinetics in processes of 
nucleation and growth, Trans. Am. Znst. Min. Metall. Engrs, 135, 

Karato, S., 1984. Grain-size distribution and rheology of the upper 
mantle, Tectonophysics, 104, 155-176. 

Katsura, T. & Ito, E., 1989. The system Mg,SiO, - Fe,SiO, at high 
pressures and temperatures: precise determination of stabilities of 
olivine, modified spinel and spinel, J.  geophys. Res.  B, 94, 
I5 663-15 670. 

Kirby, S.H., 1985. Rock mechanics observations pertinent to the 
rheology of the continental lithosphere and the localization of strain 
along shear zones, Tectonophysics, 119, 1-27. 

Kirby, S.H., 1987. Localized polymorphic phase transformations in 
high-pressure faults and applications to the physical mechanism of 
deep earthquakes, J .  geophys. Res. B, 92, 13 789-13 800. 

Kirkpatrick, R.J., 1976. Towards a kinetic model for the crystallization 
of magma bodies, J .  geophys. Res., 81, 2565-2571. 

Kirkpatrick, R.J., 1981. Kinetics of crystallization of igneous rocks, in 
Kinetics of Geochemical Processes. pp. 321-398, eds Lasaga, A.C. & 
Kirkpatrick, R.J., Rev. Mineral., 8, Mineral. SOC. Am., Chelsea, MI. 

96,485-499. 

4 16-458. 

Kolmogorov, A.N., 1937. Statistical theory of nucleation processes, 
Izu. Akad. Nauk SSSR, Ser. Math.. 3, 355-366. 

Lofgren, G.E., 1983. Effect of heterogeneous nucleation on basaltic 
textures: A dynamic crystallization study, J .  Petrology, 24, 229-255. 

Lorenz, B., Orgzall, I. & Heuer, H.-O., 1993. Universality and cluster 
structures in continuum models of percolation with two different 
radius distributions, J .  Phys. A: Math. Gen., 26, 471 1-4722. 

McKenzie, D.P., 1969. Speculations on the consequences and causes 
of plate motions, Geophys. J .  R .  astr. Soc.. 18, 1-32. 

Mahin, K.W., Hanson, K .  & Morris, J.W. Jr, 1980. Comparative 
analysis of the cellular and Johnson-Mehl microstructures through 
computer simulation, Acta metall., 28, 443-453. 

Markworth, A.J., 1984. Analysis of the extent of growth-induced 
impingement for a simple model of precipitate nucleation and 
growth, Scripta rnetull.. 18, 1309- 1311. 

Marsh, B.D., 1988. Crystal size distribution (CSD) in rocks and the 
kinetics and dynamics of crystallization 1. Theory, Contrib. Minerul. 
Petrol., 99, 217-291. 

Meijering, J.L., 1953. Interface area, edge length, and number of 
vertices in crystal aggregates with random nucleation, Philips Res. 
Rep., 8, 270-290. 

Morris, S., 1992. Stress relief during solid-state transformations in 
minerals, Proc. R.  Soc. Lorid. A, 436, 203-216. 

Orgzall, I. & Lorenz, B., 1988. Computer simulation of cluster-size 
distributions in nucleation and growth processes, Acta metall., 

Pike, G.E. & Seager, C.H., 1974. Percolation and conductivity: A 
computer study. I . ,  Phys. Rev. B, 10, 1421-1434. 

Randolph, A.D. & Larson, M.A., 1988. Theory ofParticulate Processes, 
Academic Press, San Diego, CA. 

Rubie, D.C., 1984. The olivine + spinel transformation and the 
rheology of subducting lithosphere, Nature, 308, 505-508. 

Rubie, D.C. & Ross 11, C.R., 1994. Kinetics of the olivine-spinel 
transformation in subducting lithosphere: experimental constraints 
and implications for deep slab processes, Phys. Earth plunet. Inter., 

Rubie, D.C., Tsuchida, Y., Yagi, T., Utsumi, W., Kikegawa, T., 
Shimomura, 0 .  & Brearley, A.J., 1990. An in situ x ray diffraction 
study of the kinetics of the Ni,SiO, olivine-spinel transformation, 
J .  geophys. Res. B, 95, 15 829- 15 844. 

Ryum, N.  & Hunderi, O., 1989. On the analytic description of normal 
grain growth, Acta metall., 37, 1375-1379. 

Saetre, T.O., Hunderi, 0. & Nes, E., 1986. Computer simulation of 
primary recrystallization microstructures: the effects of nucleation 
and growth kinetics, Acta metall., 34, 981-987. 

Sekimoto, K., 1986. Evolution of the domain structure during the 
nucleation-and-growth process with non-conserved order parameter, 
Physica A, 135, 328-346. 

Solomatov, V.S. & Stevenson, D.J., 1993. Kinetics of crystal growth 
in a terrestrial magma ocean, J.  geophys. Res. E, 98, 5407-5418. 

Spohn, T., Hort, M. & Fischer, H., 1988. Numerical simulation of the 
crystallization of multicomponent melts in thin dikes or sills. 1. The 
liquidus phase, J .  geophys. Res. B, 93, 4880-4894. 

Stauffer, D., 1981. Scaling properties of percolation clusters, in Lecture 
Notes in Physics, 149, pp. 9-25, eds Castellani, C., Di Castro, C. & 
Peliti, L., Springer-Verlag, Berlin. 

Stauffer, D. & Aharony, A,, 1992. Introduction t o  Percolation Theory, 
2nd edn, Taylor & Francis, London. 

Sung, C.M., 1979. Kinetics of the olivine-spinel transition under high 
pressure and temperature: experimental results and geophysical 
implications, in High Pressure Science and Technology, uol. 2, 
Applications and Mechanical Properties, pp. 3 1-42, eds Timmerhaus, 
K.D. & Barber, M.S.. Plenum Press. New York, NY. 

Thompson, A.H., 1991. Fractals in rock physics, Ann. Rev. Earth 
plunet. Sci., 19, 237-262. 

Tonks, W.B. & Melosh, H.J., 1990. The physics of crystal settling and 
suspension in a turbulent magma ocean, in Origin of the Earth, 

36, 627-631. 

86, 223-241. 

0 1996 RAS, GJI 125, 391-414 



414 M .  R .  Riedel and S .  Karato 

pp. 151-171, eds Newsom, H.E. & Jones, J.H., Oxford University 
Press, New York, NY. 

Turcotte, D.L. & Schubert, G., 1982. Geodynamics. Applications of' 
Continuum Physics to Geological Problems, J. Wiley & Sons, New 
York, NY. 

APPENDIX A: KINETIC EQUATION SET 
FOR NUCLEATION A N D  GROWTH 

We give here a brief derivation of the equation set (5) for the 
droplet model of nucleation and growth. 

Starting from the continuity equation (1) for the radial 
distribution function n(r, t ) ,  the volume fraction of untransformed 
material is given in the thermodynamic limit by 

lim 1 - 2  =exp(-~,.,) 
N- m ( xNy 
because of the statistical independence of different grains. The 
time development of X3.D is obtained by repeatedly performing 
partial integrations: 

-X3.,(t)= d (: ?r'[&n(r,  t ) ] d r  
d t  

= 'j"'[ - $(Y(r ,  t)n(r, t ) )  dr  1 
a 

- N - 471 Y( t )  1: r3 - n(r, t )  dr 
3 ar 

where the last term in the square brackets vanishes because of 
the convergence of integral (6a). The third line is valid only 

approximately when the growth rate is not size-dependent, for 
example for an interface-controlled mechanism (Dowty 1980). 

Eqs (5b) and (5c) are derived in complete analogy with 

d 
X2.d t )  = lm nrz [ n(r, t )] dr 

= Lm nr2 [ - d(Y(r ,  t )n ( r ,  t ) )  
d r  

= n Y ( t )  s," 2rn(r, t )  d r  - nY(t)[r2n(r ,  t ) ] ;ZF 

=: .Y(t)X,,(t)  

and 

d 
-x,.D(t)= dt (: 2r[&n(r, t ) ] d r  

= lm 2r [ - (Y(r,  t)n(r, t ) )  dr 1 
00 

= 2 Y ( t )  n(r, t )  dr - 2Y(t)[rn(r,  t ) ] : 3  
0 

=: 2 Y( t)X,,( t )  . 

Finally, eq. (5d) is obtained from the boundary condition (2b) 
according to 
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