11-Subduktion zonen

R. Bousquet 2009-2010

Earthquakes

Module BP 11 - 1

R. Bousquet 2009-2010

Earthquake Location

USGS

http://earthquake.usgs.gov/

USGS Centroid Moment Tensor Solution

10/01/12 21:53:10.16 HAITI REGION Epicenter: 18.523 -72.559 MW 7.0

JSGS CI	ENTRO	DID MO	MENT TI	ENSOR	10
10/01/2	12 21	:53:2	4.50		
Centro	id:	18.8	26 -72	2.162	
Depth	10		No.	of st	a:125
foment	Tens	sor;	Scale	10**	19 Nm
Mrr=	1.63	1	Mtt=	-3.71	5
Mpp=	2.08	3	Mrt=	0.42	
Mrp=	1.93	1	Mtp=	2.50	E.
Princ	ipal	axes:			
T Va	al=	4.40	Plg=3	5 Az	m=289
N		0.26	5	4	115
Ρ	10	4.65		2	21

Best Double Couple:Mo=4.5*10**19 NP1:Strike= 71 Dip=64 Slip= 25 NP2: 330 68 151

____ ---- P #####============ ########## ################# ################## #### ##### _____##### _____## _____

HAITI REGION Mw 7.0 USGS Centroid Moment Tensor Solution

Date: 12 JAN 2010 Time: 21:53:10.16 Epicenter: 18.523 -72.559 Depth: 10 km

USGS

Module BP 11 - 11

Module BP 11 - 1

R. Bousquet 2009-2010

An accretionary wedge is a wide submarine mountain belt...

Makran wedge

Marianna wedge

Schematic Representation of Relationships of Serpentine Seamounts to Forearc Structures Distance from trench Axis (km) 100 50 0 0 brucite chimneys carbonate chimneys Pacific Plate seamount forearc sediment **Trench Axis** horst block horst block compaction, dessication, graben Depth (km) diagenetic reactions • \odot \otimes Legend dip-slip motion direction of subduction horizontal motion toward \odot horizontal motion away decarbonation, serpentine mud volcano dehydration blueschis 20 decollement reactions conduit of mud volcano blueschist pod

Lesser Antilles wedge

Barbados accretionary prism

Module BP 11 - 1

Sunda wedge

Module BP 11 - 1

Nankai wedge (Japan)

Muroto transect - Cross section of the accretionary complex Shikoku deep sea fan(s) (volcaniclastic poor) Nankai Trough axial channel (volcaniclastic rich) Trench Recent accretionary wedge Miocene-Pliocene package Plio-Pleistocene package accreted 1-1.8 Ma reactivated 0.5-0.7 Ma 1178 slump 8SR cover sequence 1175 1176 1 Ma basin BSR 1173 808 1174 LDR's cover Thrust sediment fault traces seismogenic zone thick imbricate packages frontal decollement Basement high ? Moho 10 0 approximate V.E.3x kilometers P. Henry & JOIDES Team

Cascadia wedge

Ionian Sea wedge

Kukowski et al., 2002

Ionian Sea wedge

Module BP 11 - 1

Kukowski et al., 2002

Ionian Sea wedge

Kukowski et al., 2002

Types of accretionary wedge

Mechanisms of accretion

- Strain partitioning
- Two different growth processes acting simultaneously

Mechanisms of accretion

In the eighties, **mechanical modeling** of mountain building bring geologists to consider mountain belts as **crustal scale accretionary wedges.**

-> Coulomb wedge theory (The wedge is considered to deform homogeneously).

* Different tectonic regimes depending on wedge stability : critical, subcritical...

Critical taper

Surface motions of various wedge states relative to the subducting plate

do not give any information on how the interior of the wedge deforms

Fixed plate (Backstop)

Malavieille, com. pers.

Module BP 11 - 11

High	friction	

Malavieille, com. pers.

Module BP 11 - 1

R. Bousquet 2009-2010

Biagi & Malavieille, 1987

Impact of backstop geometry

Malavieille & Biaggi., 1987

Types of wedge & exhumation of HP rocks

Tectonic plates around Taiwan

Geodynamic setting

Taiwan, The classical example of

Arc-continent collision!

Why not? But, what does it mean?

Tomography below Taiwan

North profile

Lallemand et al., 2001

Tomography below Taiwan

Profile in the Middle of the island

Tomography below Taiwan

South profile

Seismicity around Taiwan

Seismicity around Taiwan

Seismicity around Taiwan

Carena et al., 2002

Taiwan's wedge geometry

II

Taiwan's wedge geometry

Module BP 11

3D geometry

Module BP 11 - 11

Lallemand et al., 2001

Beetion 1

Section 2

Taiwan: analogical models

Taiwan: analogical models

Although convergence & erosion being uniform, deformation recorded in the wedge is complex

Taiwan: structure vs model

Malavieille, com. pers.

Metamorphic evolution & erosion distribution

Willett et al. 2001

Main forces of plate tectonics

Slab dip vs. age

Back-arc dynamics

Back-arc dynamics

Major Pacific slab geometries classified by groups of deep slab dips except the first group, which concerns flat subductions with variable deep slab dips: 30° to 50°, 50° to 60°, 60° to 70°, steeper than 70°. Active arc/ back-arc compression is observed for slab dips lower than 50°, whereas active arc/ back-arc extension occurs only for slabs dips steeper than 50°.

Absolute vs effective trench migration

The shape produced by sinking slab elements depends upon the speed of the trench relative to the underlying mantle

Similar profiles may result from (a) a fast trench and quiescent mantle or

(b) a stationary trench and a fast flowing upper mantle; in both cases the effective migration rate is the same. Even in the absence of the global mantle flow, this coupling will result in steeper dips than produced in a.

(c) **Conversely**, a fast moving trench may have zero effective velocity.

(d) Plate motions alter mantle flow fields unless completely decoupled.

(e) In one-sided subduction, plate/ mantle coupling will generate a flow associated with the trench's motion, thus limiting changes in effective migration.

Tao & O'Connell, 1992

Relative motions of subduction zones

Arcay et al., 2008

Relative motions of subduction zones

Plate tectonic forces

Module BP 11 - 1

