10-Subduktion zonen

Konvergente Plattenräder

Konvergente Plattenräder: Erdbeben

Konvergente Plattenräder: Vulkanismus

Plattenräder

Subduction cartoon

Module BP 11 - 10

Different types of back-arcs

Konvergente Plattenräder: Erdbeben

Wadati-Benioff zones

Subduction & earthquake location

10

Konvergente Plattenräder: Erdbeben

Deep of earthqukes

Big earthquakes distribution

The largest interplate thrust earthquakes in the instrumental era to 2005

Geist, Titov, and Synolakis (2005 Sci. American)

Big earthquakes distribution

Instrumental and Historical Events M ≥ 8.5 since 1700 Areas of Slip Shown as "Sausages" _____ Subduction sectors with M≥8.5 events _____

After Geist et al. (2005)

Tomography of subduction zones

After Spakman

Main volcanos

Volcanic arcs

They commonly occur close to 100 km above the slab

Y.Tatsumi Fig.

<u>but</u>, there are exceptions

(see England et al., 2004)

Volcanic arcs

They commonly occur close to 100 km above the slab

Erdbebenverteilung

(England et al., 2004)

Heat budget in subductions zones

Metamorphism & subduction

Metamorphism & subduction

Fast subduction

Very "Cold" Gradient HP-LT ~ $6^{\circ}C/km$

Eclogite

Blueschist

Slow subduction

"Cold" Gradient HP-LT ~ $15^{\circ}C/km$

500%

Treibende Kräfte der Plattentektonik

Slab-pull & Age

Slab pull

Module BP 11 - 10

Subduction slabs

Marianas/Japan/Kuriles subduction zone

http://rses.anu.edu.au/seismology/projects/RUM/slabs/slabs.htm

Alaska

South America

Module BP 11

R. Bousquet 2009-2010

excess of water, absence of melting

Metamorphose & Slab pull

No slab pull

Temperature and velocity

Slab pull

101 Module BP 11

1400 0 30 90 120 150 210 240 270 300 Depth (in km) 930 ∞C 470 without Metamorphism 20 = Force (in 10¹² N/m) Density 3600 0 30 90 120 150 210 240 270 300 Depth (in km) 3300 kg/m³ 3000 2700 15 Convergence Γ**Γ** 1.5 cm/yr +-Temperature and velocity 1400 with 0 30 90 120 150 210 240 270 300 Metamorphism Depth (in km) 930 °C 470 Doin & Henry (2001) 10 0 5 10 15 Ō Density 3600 Time (in Ma) 0 30 90 120 150 180 210 240 23 Depth (in km) 3300 kg/m³ 3000 2700 F

20

25

Convergence

1.5 cm/yr -

Metamorphism: dynamic modeling & subduction

Excess weight of old slabs is often counterbalanced by cold temperature conditions. They inhibeted eclogitization processes

Light slab of young oceanic plate are favorizing HT that trigger eclogitization within the slab

Wie kommen Fluide in das System?

Module BP 11 - 10

Wie kommen Fluide in das System?

Module BP 11 - 10

Hydratation der ozeanischen Kruste (Basalt) des lithosphärischen Mantels

Fluids & Mantle wedge dynamic

Mature Island Arc & metamorphism

Geotherms of subduction

Geotherms of subduction

Cold geotherm

No eclogitization occurs until 30 kbar

Eclogitization = depth where crustal rocks become **denser** than mantle rocks

- 10

Cold geotherm (late heating)

10

Hot geotherm

SW Japan

temperature increase