Globale Seismizität I

Erdbebenquelle Stressfeld

Literatur:

Berckhemer, H., Grundlagen der Geophysik, Wiss. Buchges. 1990. Stüwe, K. Geodynamik der Lithospäre, Springer, 2000

Sheaer, P., Introduction to Seismology, Cambridge University Press, 1999.

Lay, T. & T. Wallace, Modern Global Seismology, Academic Press, 1995.

20

Global earthquake distribution 1995 - 2006

> Source depth < 100 km

Source depth from 100 to 700 km

- Earthquakes mark currently active faults
- Deep earthquakes only at subduction zones
- Earthquake distribution greatly contributed to development of plate tectonics

Issues:

- What are earthquakes physically?
- How are they generated?
- What happens during an earthquake?

From myth to physics:

- Earthquakes due to drought or rain (Demokrit)
- 19th century: fire (plutonists) or water (neptunists)
- 1873, 1875: relation to tectonic faults (Edward Suess)
- 1910: Reid's elastic rebound hypothesis

Elastic rebound hypothesis (Reid ´sche Scherbruchhypothese) San Francisco earthquake (M_s = 8.3) 1906: surface faulting up to 6 m at rupture of 300 km length

The earthquake process

Tectonic forces bend the fence

Rupture, strained rocks spring back

Earthquakes as shear fractures

Straight lines:

Elastic deformation accumulates:

Characteristic deformation in the vicinity of the focus

Wavetype: **P-waves**

On nodal planes sign reversal ---- no displacement

P-wave motion equal for 2 conjugate faults

Distribution of initial ground movement during the Tango earthquake (1927, Japan)

S-waves:

- similar distribution
- 4 domains of different first motions
- nodal lines offset by 45° against nodal planes of P-waves

Force models of earthquakes

- equivalent volume forces (Nakano 1923)
- radiation from punctually acting single forces and their combinations

Single force

Equal opposite forces, tension Equal opposite forces, torque 2 force pairs, tension and compression

2 force pairs, torques

Influence of shear on an infinitesimal volume

Equal value of relative change in length, different signs

System of equivalentDecomposition ofTwo orthogonalorthogonal pressure andforces into partsforce dipolestension (**P and T axes**):parallel to the axes

For shear on horizontal line: equivalent system of compression/extension -> equivalent double couple

Symmetry - no discrimination between 2 orthogonal planes!

- **Caution**: simplified model of forces being equivalent to radiation process
- Theoretical connection between forces and displacement explained in fifties
- **Double-couple** force model required to explain wavefield due to **shear sources**

Radiation pattern

= amplitude of displacement due to the radiated wave on a unit sphere in direction of propagation

e.g. explosion (only P waves):

Interpretation:

- Line from origin to observation point cuts radiation pattern in a certain point
- Distance of this point from origin = measure of radiation strength
- Up: first motion = compression, down: dilatation

Fault plane solutions

- Determination of fault and auxiliary plane
- Direction of motion
- Equivalent system of pressure and tension

Classical method:

based on P-wave first motions

- a) trace first motions back to focal sphere
- b) determine quadrants of different first motion
- c) thus P- and T-axes, dislocation vectors known

Result – Fault-Plane solutions

HFL mit Markierung der Achsen und Dislokationsvektoren

P- and T-axes

directions of
maximal compression/extension in
radiation pattern

Generally P, T **NOT** ^I equal tectonic stress axes, only under 45° - hypothesis

e.g. San-Andreas fault: max. principal stress ⊥ fault

Interpretation of fault plane solutions - seismotectonics

- **Dynamic** interpretation of a single FPS problematic
- Combination of many FPS: stress tensor inversion
- FPS important for **kinematic** interpretation: sense of faulting, direction of motion, deformation pattern

Main types of fault mechanisms

Normal fault

Reverse fault

Active plate margins:

3 types: constructive, destructive, conservative

Die Erde im Schnitt

Double couple explains shear fracture, but no other seismic sources (explosions, implosions, hydrofrac)

Generalization: different dipole combinations

Seismic moment tensor M_{jk}

Scalar Seismic moment:

$$M_{T} = \sqrt{\sum_{j,k} M_{jk} M_{jk} / 2}$$
$$\approx M_{0} = \mu \overline{d_{0}} A_{0}$$

equal for shear sources

Point source ---- Extended source Wavelength > focus dimension

Models for extended sources:

- Kinematic: prescribed dislocation on focal plane
- Dynamic: prescribed stress

Wanted:

- dislocation at observation point
- spectral amplitudes

Stress field

- So far: kinematics
- Stress field => dynamics
- Stress field ⇔ geological structures: What comes first?

a) Fundamentals: description of stress, stress tensor, principal stress axes

stress measurement

b) Interpretation of the stress field in plate tectonic context

A. Fundamentals

Definition of stress: Force per area => What unit? Which area?

- => Complete description of stress state requires specification of forces acting on an arbitrary area
- => Stress tensor σ_{ij}

Stress vector on an arbitrary area with normal vector n:

 $\vec{T}(\vec{n}) = \lim_{ds \to 0} \frac{\vec{F}}{ds}$ with \vec{F} = force acting on the area ds.

If stress tensor known:

=> Forces parallel to coordinate axes known

=> Easy calculation of stress vector $\vec{T}(\vec{n})$ on any area normal to \vec{n} : $\vec{T}(\vec{n}) = \underline{\sigma} \cdot \vec{n}$

Characteristics of Stress tensor

• Stress and strain are related through elastic material properties (small deformations)

Stress-strain relations (Hooke's Law):

$$\sigma_{ij} = c_{ijkl} \tau_{kl}$$

T_{kl} : strain
c_{ijkl} : general elastic tensor
anisotropy: up to 27 independent
components
isotropy: 2 independent components
(Lamé parameter λ and μ)

Characteristics of Stress tensor

Number of quantities needed to determine $\underline{\sigma}$:

- Most general case: 9
- In practice: symmetrical stress tensor, i.e. $\sigma_{ij} = \sigma_{ji}$

⇒Rotation to **principal axes system** (eigenvectors and eigenvalues)

In principal axes system:

$$\underline{\sigma} = \begin{pmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \end{pmatrix} \quad \sigma_1, \sigma_2, \sigma_3 \text{ principal stresses}$$

convention: $\sigma_1 > \sigma_2 > \sigma_3$

- σ_1 maximum compression
- σ_3 minimum compression (maximum dilatation)

 $\sigma_1, \sigma_2, \sigma_3$ fully describe stress state

Decomposition of the stress vector

- **Normal stress** $\vec{\sigma}_n$ = perpendicular to area (parallel to \vec{n})
- Shear stress $\hat{\tau}$ = tangential to area (perpendicular to \vec{n})
- a) Pre-existing fault: Direction of τ determines direction of motion, σ_n acts against motion
- b) Homogeneous rock:
 - rupture along the area where shear stress exceeds rigidity

Shear stress τ on arbitray plane?

Numerical determination of τ

a) determine $\underline{\sigma}$ and \vec{n}

b) determine $\vec{T}(\vec{n})$ as $\underline{\sigma} \cdot \vec{n}$

c) decompose $\vec{T}(\vec{n})$ into σ_n and τ

• The shear stress τ at maximum at θ =45° direction.

Maximum shear stress τ condition?

Coulomb fracture criterium

$$\tau_{crit} = \tau_0 + \mu \cdot \sigma_n$$

 τ_{crit} = critical shear strength τ_0 = cohesion μ = coefficient of internal friction σ_n = normal stress

Real materials do **not** rupture under 45° to σ_1 ! Θ depends on μ , normally $\theta \approx 30^\circ$

In nature:

• Orientation of principal stress axes approx. horizontal or vertical

maximum

- Vertical stress = { medium minimum principal stress
- => different stress regimes
- => different tectonic structures (stress regime)

Fault types & stress regimes

SS: Strike-slip faulting (includes minor normal or thrust component)

TS: Predominately thrust with strike-slip component

NS: Predominately normal with strike-slip component

If Coulomb criterium applies: first estimate stress field from fault-plane solution dependent on coefficient of internal friction.

Determination of the stress state

- 1. Analysis of harnesses on faults (Striemung)
- 2. Fault-plane solutions
- 3. Borehole breakouts
- 4. Hydraulic fracturing
- 5. Overcoring
- 6. Volcano alignment
- 7. Mineral alignment after recrystalization

1. Analysis of harnesses on faults (Striemung)

Assumptions:

- a) fault at ca. 30° to σ_1
- b) motion parallel to τ_{max} in fault plane
- =>Information about paleo stress field

For recent stress field: fault plane solutions

2. Fault plane solutions

Principle:

 Reconstruction of fault kinematics from observations of seismic waves

2. Fault plane solutions P-, T-axes:

Directions of maximal compression / extension, explain radiation pattern of seismic waves

P-wave radiation pattern

S-wave radiation pattern

$\begin{array}{l} \mathsf{P} = \sigma_1 \\ \mathsf{T} = \sigma_3 \end{array} \quad \text{if } \mathbf{45^\circ hypothesis} \text{ applies} \end{array}$

• In reality:

internal friction => σ_1 at appr. 30° to fault

•Angles up to 0° possible

In both cases 4 quadrants of different deformation:

W-E

Summary

- =>Dynamic interpretation of single FPS questionable, only P-, T-axes can be derived
- =>Principle stress axes σ_1 , σ_3 from simultaneous **stress tensor inversion** of several FPS

3. Borehole breakouts

 At borehole in tectonically stressed material concentration of stress

- Breakouts at azimuth corresponding to minimum horizontal stress s_{hmin}
 =>conclusion to s_{hmin}, s_{Hmax}
- Observation with televiewers

4. Hydraulic fracturing

Figure 1. Injection rate (top), well head pressure (middle) and rate of induced events (bottom) as a function of time for the KTB fluid-injection experiment in 2000.

4. Hydraulic fracturing

- Injection of liquid into borehole
 - => Extensional fracture parallel to s_{Hmax}
- Pumping curves => exact value for s_{hmin}

=> estimate of limits for s_{Hmax}

- Practical difficulty: detection of induced fracture
- Also hydraulic tests on preexisting fractures

5. Overcoring

- Measurement of core relaxation immediately after extraction
- Requires exact knowledge of material tensor

Problems:

- •Measurement on very small area => inexact
- Only near-surface samples => topographic effect on deformation can be large
- => correlation with tectonic stress problematic

6. Volcano alignment and dikes

- Analogous to hydrofracturing
- Liquid = magma
- In young volcanic regions

Problem:

Utilisation of pre-existing old fractures possible

7. Pressure solution, quartz twinning

- Recristallization in direction of minimal pressure
 Summary
- Many stress indicators exist
- Different information, from paleo stress directions to complete in situ stress tensor
- Since 1986 systematic global lithosphere stress field investigation

Compilation of the global stress field, S_{Hmax} directions

30 groups, > 18 countries, 54% FPS, 28% borehole, breakouts, 4.5% hydrofracs, 3.4% overcoring, 4.1% volcano alignment

Global results, first order effects

- In brittle crust almost everywhere consistent stress field
- Intraplate areas: horizontal s₁ => strike slip, thrust
- Extension often in areas of high topography
- Stress provinces with consistent s_1 , s_3

Generalized stress map

Forces acting on a plate

TABLE 4. First-Order Global Stress Patterns

First order global stress patterns

	S_{Hmax} or S_{kmin} Orientation ^a	Stress Regime [#]	D: 0 00	References		
Region			and Comments	State of Stress	Stress Modeling	
Midplate region Western Cordillera, Central America, and Alaska	ENE	T/SS	North American Plate primarily ridge push, lateral stress variations predicted for basal drag not observed, regionally extensive ($\sim 2 \times 10^7$ km ²) complex stress patterns beyond scope of discussion, largely related to superposition of buoyancy forces and distributed shear related to Pacific–North American relative motion	Adams and Bell [1991] and Zoback and Zoback [1989, 1991] many references, see summaries by Zoback and Zoback [1989, 1991]. Suter (1991], Suter et al. [this issue], and Estabrook and Jacob [1991]	Richardson and Reding [1991]	
Continental	E	T/SS	South American Plate primarily ridge push, torque analysis suggests driving drag possibly major force [Meijer and Wortel, this	Assumpcao [this issue]	Stefanick and Jurdy [this issue] and Meijer and Wortel [this issue]	
High Andes	N	NF	issue] trench suction or buoyancy due to thick crust and/or thinned lithosphere	Froidevaux and Isacks [1984] and Mercier et al. [this issue]	Whittaker et al. [this issue] and Stefanick and Jurdy [this issue]	
Western Europe	NW	55	Eurasian Plate combined effects of ridge push and continental collision with Africa dominate, absolute velocity ~ 0; thus resistive or driving basal drag probably not important; lateral variations in lithospheric structure may locally	Klein and Barr [1987], Gregersen [this issue], Grünthal and Stromeyer [this issue], and Müller et al. [this issue], and Rebai et al. [1992]	Brudy [1990] and Günthal and Stromeyer [this issue]	
China/eastern Asia	N to E	SS	dominates, indentor geometry extremely important	Molnar and Tapponnier [1975], Molnar and Deng [1984], and Xu et al. [this issue]	England and Houseman [1989], Tapponnier and Molnar [1976], and Vilotte et al. [1984, 1986]	
Tibetan Plateau	WNW	NF	Buoyancy (due to thick crust and/or thinned upper mantle) overcomes compression due to continental collision force	Molnar and Tapponnier [1978], Mercier et al. [1987b], and Burchfiel and Royden [1985]	[1964, 1966] England and Houseman [1989] and Vilotte et al. [1986]	
East African rift	NW	NF	African Plate Buoyancy force overcomes	Bosworth et al. [this issue]		
Midplate (western and southern Africa)	Е	SS	ridge push compression ridge push dominates absolute velocity ≈ 0; thus drag probably not important	this paper, using data of Bosworth et al. [this issue], Suleiman et al. [1989], and D. I. Doser (written communication, 1990)		
North Africa	N to NW	T/SS	continental collision with Europe dominates	Rebai et al. [1991] and Kamoun and Hfaiedh [1985]		
India	N to NE	T/SS	Indian Australian Plate continental collsion	Gowd et al. [this issue]	Cloetingh and Wortel	
Central Indian Ocean	N to NW	T/SS	complex interaction collision and trench forces, long- wavelength basement undulations due to stress- induced flexure?	Bergman [1986], C. Stein et al. [1989], and Petroy and Wiens [1989]	[1965, 1960] Cloeingh and Wortel [1985, 1986] and Gover et al. [this issue]	

— • • •		S _{Hmax} or	Strace	Deimony Source of Streen	References	
First order	Region	Orientation ^a	Regime ^b	and Comments	State of Stress	Stress Modeling
global stress	West Indian Ocean	N to NW	NF	Indian Australian Plate (cont high level of intraplate seismicity with S_{hmin} parallel to nearby mid- ocean ridges, due to thermoelastic stresses or comple geometry of plate driving forece?	inued) Bergman et al. [1984], Wiens and Stein [1984], and Stein et al. [1987]	Cloetingh and Wortel [1985,1986], Bratt et al. [1985], and Gover et al. [this issue]
patterns (2)	Central Australia and northwest shelf	N to NE	TF	much scatter in stress orientations; however, best data suggest consistent north to NNE S _{Hmax} directions	this paper	Cloetingh and Wortel [1985, 1986]
	Southern coastal Australia	Е	TF	source of E-W stress unknown		
	Young (<70) crust	NE	SS	Pacific Plate ridge push, slab pull, drag all give same orientation	Okal et al. [1980] and Wiens and Stein [1984]	Richardson et al. [1979], Bai et al. [this issue], Wortel et al. [1991], and Gover at al. [this issue]
	Older crust (>70)	NW?	T/SS	driving drag would predict extension, not observed compression; extension predicted due to mantle upwelling central Pacific also not observed	Wiens and Stein [1985] and Zoback et al. [1989]	Richardson et al. [1979], Bai et al. [this issue], Wortel et al. [1991], and Gover et al. [this issue]
	Midplate	?	?	Nazca Plate only one earthquake focal mechanism available		Wortel and Cloetingh [1985] and Richardson and Cox [1984]
	Midplate	?	?	Antarctic Plate expected stress state is radial compression (surrounded by ridges), one focal mechanism available, seismicity suppressed by ice sheet?	Johnston [1987]	
	West Antarctic rift	E to NE	NF	Cenozoic rift system with basalts as young as Holocene; buoyancy forces dominate midplate compression	Behrendt et al. [1991] and Behrendt and Cooper [1991]	

TABLE 4. (continued)

 ${}^{a}S_{H\max}$ orientation given for thrust or strike-slip faulting stress regimes; $S_{h\min}$ given for normal faulting stress regimes. ${}^{b}NF$, normal faulting stress regime; SS, strike-slip faulting stress regime; TF, thrust faulting stress regime; T/SS, combined thrust and strike-slip regimes (see text for definitions of stress regimes).

Interpretation of first order stress patterns

- Compression within plates due to compressive forces acting on plate margins (ridge push, continental collision)
- Buoyancy in regions of high elevation (Tibet) can locally compensate intra plate compression
- 3. Basal drag difficult to estimate

Higher order stress patterns

Variety of effects:

- Deflection due to load (ice, sediments, sea mounts), at subduction zones (outer arc bulge)
- Lateral density contrasts (intrusions, isostatically uncompensated orogens)
- Lithosphere thinning (East African Rift) => intra plate extension
- Lithosphere thickening (Colorado Plateau, Western Alps) => rotation of S₁