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1. INTRODUCTION 

1.1 Background 
Earth’s evolution reflects the history of heat transfer 

from the interior [53, 1101 via the fundamental 
processes of plate tectonics, conduction through con- 
tinental lithosphere, and hotspot volcanism [103]. As a 
result, considerable attention has been directed toward 
understanding Earth’s thermal history, the variation in 
the temperature field in space and tune. The primary 
directly observable quantity for heat flow is the tem- 
perature gradient near the surface, which is in turn used 
to estimate the flow of heat from the interior and hence 
draw inferences about the thermal structure and evolu- 
tion. 

The challenge is the classical one of using the meas- 
ured temperature and temperature gradient at an object’s 
surface to infer the temperature field within the body, 
T(x,t), a function of position x and time t. Near the 
earth’s surface, the temperature gradient is essentially 
vertical, so the outward heat flow qs is 

the product of the vertical gradient of the temperature 
T(z), which is most everywhere positive downwards 
(temperature increases with depth z), and the measured 
or estimated thermal conductivity of the material, k. 
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Such heat flow measurements (or more precisely esti- 
mates based on the measured gradient) are the primary 
boundary conditions used to find the temperature field 
via the heat equation, 

,Cp[ $+v-VT] =V*(kVT)+A, (2) 

where p is the density, C, is the specific heat, A is the 
heat generation, and v is the velocity of the moving 
material [e.g 25, 1081. This equation balances the 
change in the heat content of a body of material with 
the heat transferred by conduction, brought in by 
material motion, and generated within the body. 

Solution of this equation, and hence deduction of 
temperature structure from heat flow, is a difficult and 
nonunique inverse problem. The variation in physical 
properties with depth is significant but uncertain. The 
expected solid state convection in the mantle has major 
thermal effects [e.g. 931. As a result, although some 
inferences about temperature structure can be drawn 
based largely on heat flow, considerable additional 
information is drawn from seismological studies [e.g. 
961, laboratory and theoretical studies of the physical 
properties of earth materials [e.g. 21, and modeling of 
convection in the earth [e.g. 481. 

The measurement of heat flow has thus long been an 
active research area. The lirst reported heat flow meas- 
urements were made in oceanic lithosphere by Revelle 
and Maxwell [92] and in the continental lithosphere by 
Benfield [13] and Bullard [23]. The 1966 edition of 
The Handbook of Physical Constants 1653 listed about 
2000 measurements. Since then, the number of heat 
flow sites included in successive compilations 151, 72, 
1021 has increased to about 25,000 listed in the most 

144 



STEIN 145 

recent compilation [87]. Typical values of the surface 
temperature gradient, conductivity, radioactive heat gen- 
eration, and heat flow for continents and oceans are 
listed in Table 1. 

1.2 Measurements and Techniques 
Despite its conceptual simplicity, the process of 

deducing heat flow from a measured gradient and con- 
ductivity values has surprising complexity. Aspects of 
the problem, including the historical development, are 
reviewed by various authors: see Louden and Wright 
[73] for marine studies, Beck [9] and Clauser and 
Huenges [30] for thermal conductivity, Beck and Bal- 
ling [ll] for temperatures, and Jessop [50] for both tem- 
peratures and thermal conductivity. 

The vertical temperature gradient is computed from 
temperatures measured at known depths below the sur- 
face. However, the process of penetrating the surface to 
measure the temperatures disturbs the thermal structure. 
For marine measurements, thrusting a probe into the 
sediments to depths of about 5 m results in frictional 
heating, which takes from 5 to 30 minutes to dissipate 
depending mostly on the probe diameter. Prior to 1975 
most heat flow values were based on single measure- 
ments, which were typically spaced about 200 km apart. 
Subsequently, digital instrumentation has resulted in 
both better temperature determinations and the capabil- 
ity to make closely-spaced seafloor (“pogo”) penetra- 
tions more rapidly than before. Hence, local variations 
in the heat flux can be better identified and their cause 
determined. For measurements on land, temperatures 
are measured in drill holes using down-hole instruments 
lowered on a cable. For either measurements on land, or 
in marine boreholes (such as for the DeepSea Drilling 
Project or the Ocean Drilling Program), calculating the 
undisturbed temperatures is more complicated. The dril- 

Table 1. Important Parameters for Heat Flow 

Property, Symbol Approximate Range 

Heat flow, q 0 - 125 mW m-* 
Vertical temperature 

gradient, dT/dz 10 to 80 ‘=C/km 
Thermal conductivity, k 

marine sediments 0.6 - 1.2 W m-l K-’ 
continental sediments 1 - 5 W m-’ K-’ 

heat generation, A O-8 lOA W me3 
Specific heat, C, 0.85-1.25 kJ kg-“C’ 
Density of crustal rocks 

and lithosphere, p 2200 to 3400 kg m-* 

ling process produces thermal perturbations due to the 
exchange of heat between the walls of the hole and the 
drilling fluid in addition to that due to the friction of 
drilling. With time, the temperatures slowly return to 
the undisturbed state. Temperature is determined either 
by waiting sufficient time for the site to return to the 
presumed equilibrium state, or measuring the change in 
temperature with time and then calculating an assumed 
equilibrium temperature [ 111. 

In some cases the thermal conductivity is measured 
either in situ or on a sample of the rock recovered and 
measured in a laboratory. In others, it is estimated based 
on either the known Ethology or values measured from 
nearby sites. Initially measurements were made on 
recovered samples with corrections made for the 
differences in pressures and temperatures between the 
laboratory aud the depth from which the sample was 
recovered [e.g. 911. For marine studies the in situ aud 
corrected shipboard thermal conductivity measurements 
agree within about 5% [49]. In situ determinations are 
preferred because the sediments have not been disturbed 
(especially due to water loss) by the coring and tran- 
sportation. Generally, no attempt is made to measure or 
correct for the possibility of anisotropic values of con- 
ductivity, resulting mainly from the anisotropic structure 
of minerals and rocks. The anisotropy of near-surface 
marine sediments is negligibly small. 

Typically the heat flow is calculated from the product 
of the average thermal conductivity and the thermal gra- 
dient. If there are significant variations of the conduc- 
tivity and thermal gradient with depth (typicalIy due to 
variations in Ethology) the heat flow is estimated. The 
two most commonly used techniques are the interval 
method and the Bullard method [90]. The interval 
method can be used if there is a sufficient density of 
measurements with depth to assign intervals over which 
the values of the thermal gradient and conductivity are 
relatively constant. For each interval, a heat flow is cal- 
culated from the product of the average temperature 
gradient and an average conductivity. Then the overall 
mean heat flow is determined from these interval 
values. Alternatively, the Bullard method relies on the 
assumption that in the absence of significant heat 
sources or sinks and with one-dimensional, steady-state, 
conductive heat flow, the subsurface temperature T(z) 
is: 

T(Z) = TO + Clo&WW~ (3) 
i=l 

where To is the surface temperature, qo is the constant 
heat flow, and k is the conductivity over the ith depth 
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interval Azi. For each temperature measurement point, 
the ther~~~al depth, ~(Azt/‘kJ~ GUI be calculated. Then, a 
least-squares fit is made to the data of T(z) with the 
thermal depth and the slope of the line is equal to the 
constant heat flow. 

1.3 Corrections and Climatic Effects 
The goal of measuring heat flow is to determine the 

steady-state transfer of heat flow from below. However, 
the simpliest assumptions that the only uncertainties are 
from measurement error, the site has uniform horizontal 
properties and is in a thermal steady state with only 
conductive heat transfer, are often not the case. Local 
factors such as topography, sedimentation rates, and sur- 
face temperature changes, may disturb the heat flux. 
Given sufficient information, corrections can be made 
for these factors. Horizontal variations in topography 
and lithology cause lateral variations in the temperature 
and, hence surface heat flow. For the oceans, variable 
sediment thickness and the rough basaltic surface near 
the measurement site may result in a horizontal com- 
ponent of heat flow, largely due to the contrast between 
the lower conductivity of the sediments and the higher 
values for the basalt [e.g. 14, 54, 1121. For the marine 
setting the seafloor temperature usually may be assumed 
to be constant, but for continents the variation of the 
air-temperature with elevation is frequently included in 
modeling the steady-state vertical heat fIow [e.g. 17, 
441. Another cause of non-steady state behavior is sedi- 
mentation or erosion. Rapid sedimentation conductively 
blankets the surface leading to lower measured heat 
flow [45, 63, 1121. Conversely, erosion leads to higher 
measured heat flow. 

The magnitude and duration of surface temperature 
fluctuations control the magnitude and depth of the per- 
turbation of the geotherm. Daily, annual, or climatic 
(-ld years) time periods affect the temperatures below 
the land surface to order one meter, ten meters, and 
several hundred meters respectively. Hence, for con- 
tinental regions, the depth of measurements should be 
greater than about 300 meters to obtain temperatures 
unaffected by climatic changes. The effects of surface 
temperature variations over time will be superimposed 
on the near-surface geotherm. However, higher fre- 
quency variations are suppressed relative to longer 
period changes. A number of techniques have been 
used to either correct the geotherm for a known tem- 
perature variation or to invert for long-term temperature 
variations [e.g. 10, 261. For regions where historical 
temperature information is not available inverting for 
the surface temperature variations is useful. For exam- 

ple, geothenns from the Alaskan permafrost indicate 
warming trends in this century [57]. Studies for North 
America indicate a warming trend this century and a 
cooler period corresponding to the Little Ice Age that 
began in the 1400s and lasted into the 1800s [ 12, 28, 
101, 1151. Given the thick water column, the bottom of 
the ocean is, in general, thermally stable, so variations 
of sea surface temperatures even as long as climatic 
time periods do not affect the sub-seafloor temperatures. 
Most of the deep ocean has sufficiently stable tempera- 
tures at the seafloor for accurate heat flow measure- 
ments without corrections [46]. However, changes in 
bottom water temperatures in some regions can affect 
the temperatures in the uppermost few meters of the 
sediment [e.g. 561. 

2. MARINE HEAT FLOW 

2.1 Background 
SeaIloor heat flow (Figure 1) is highest at midocean 

ridges, and decreases with the age of the lithosphere 
[62, 97, 1121. This variation is one of the key features 
in the models of plate tectonics, where the oceanic 
lithosphere cools as it spreads away from midocean 
ridges and reheats upon returning to the mantle at sub 
duction zones. This cycle is a surface manifestation of 
terrestrial convection [e.g. 48, 831 and the primary 
mode of heat transfer from the earth’s interior [27, 34, 
991. 

Average heat flow (Figure 1) is greater than about 
100 mW me2 for the youngest (~10 Ma) lithosphere. 
The mean values rapidly decrease from about 0 to 30 
million years. The standard deviations are large for 
young lithosphere, but decrease with increasing lithos- 
pheric age. Although heat flow data is “noisy” and 
scattered, it is required to develop average thermal 
models of oceanic lithosphere. The magnitudes of depth 
and heat flow anomalies (the difference between 
observed and predicted) implicitly depend on how well 
the reference model reflects the average thermal state, 
but this is often not explicitly stated. This is especially 
important for models based on observed anomalies for 
hotspots and hydrothetmal circulation. 

2.2 Thermal Models 
The primary wnstraints on models of thermal evolu- 

tion are ocean depth and heat flow versus age data. The 
two sets of data jointly reflect the evolution with age of 
the geotherm in the lithosphere, because the bathymetry 
depends on the temperature integrated over depth and 
the heat flow depends on the temperature gradient at the 
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sea floor. The key features of the data, the decrease in 
heat flow and increase in seatloor depth with age, 
prompted two classes of models. One is the half-space 
model [37], where depth and heat flow vary as the 
square root of age and the reciprocal of the square root 
of age, respectively. The second is the plate model [62, 

0 50 100 150 

0 50 100 150 
AGE (Ma) 

Fig. 1. Oceanic data, for the north Pacific and 
northwestern Atlantic Oceans, and models for heat flow 
and depth as a function of age. The data were averaged 
in two-m.y. bins, and one standard deviation about the 
mean value for each is shown by the envelope. The 
models shown are the plate model of Parsons and 
Sclater [84] (PSM), a cooling half-space model with the 
same thermal parameters (HS), and the GDHl plate 
model. GDHl (Global Depth and Heat flow), derived 
by joint fitting of this heat flow and bathymetry fits the 
data significantly better than earlier models, including 
the data from older lithosphere previously treated as 
anomalous. The improved fits imply that the oceanic 
lithosphere is thinner and hotter at depth than previously 
thought. From Stein and Stein [105]. 

751, where the lithosphere behaves as a cooling 
boundary layer until it reaches ages at which the effects 
of the lower boundary cause the depth and heat flow 
curves to flatten and vary more slowly with age. The 
asymptotic plate thickness to which the lithosphere 
evolves corresponds to the depth at which the additional 
heat is supplied from below to prevent the continuation 
of half-space cooling for older ages, and above which 
temperature changes cause bathymetric variations. 

Because of the observed flattening of depths and heat 
flow for older lithospheric ages, the plate model appears 
to be a better overall model to describe the data. Two 
different sets of parameters for the plate model (Table 
2) have been used by Parsons and Sclater [84] (hereafter 
termed PSM) and Stein and Stein [105] (hereafter 
termed GDHl). GDHl provides a somewhat better fit 
to the average depth-age and heat flow-age data using a 
hotter, thinner lithosphere compared to PSM (Figure 1). 
The heat flow predictions for GDHl are conveniently 
and accurately approximated using a half-space model 
with the same parameters for young lithosphere, and 
with the first term of the series solution for older litho- 
sphere [84]. The heat flow q (mW me2 ) is related to 
the age t (Ma) by q(t) = 510 teu2 for ages less than or 
equal to 55 Ma and 48 + 96 exp(-O.0278 t) for ages 
greater than 55 Ma. Table 3 lists the average observed 
heat flow for the major oceanic basins and predicted 
heat flow from the GDHl model with lithospheric age. 

2.3 Hydrothermal Circulation 
Regardless of which thermal model is used to 

represent the heat flow with oceanic age, a significant 
discrepancy exists between the heat flow measured at 
the sea floor and the higher values predicted for ages 
O-70 Ma (Figure 2). This is attributed to hydrothermal 
circulation with advective interchange between pore 
waters in the crust and sediments and sea water, rather 
than the conductive cooling assumed in the models [e.g. 
68, 811. The first detailed measurements at a ridge 
crest, the Galapagos Spreading Center [1181, showed the 
convection pattern with high heat flow associated with 
upwelhng zones located above topographic basement 
highs and low heat flow associated with down-flowing 
water above topographic basement lows, in accord with 
modeling [e.g. 741. Often at sites with up-flowing water 
the temperature versus depth profiles are non-linear, 
concave upward, and at sites with down-flowing water 
are non-linear, concave downward [6, 191. Subsequent 
studies indicate that in young lithosphere the high 
scatter in the values of individual heat flow measure- 
ments are presumably related to the variations in sedi- 
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Table 2: Plate model parameters 

GDHl PSM 
a plate thickness 95km 125 km 
TIIl basal temperature 1450°C 1350°C 

k” 
thermal expansion coefficient 3.1x1o-5 “C-’ 3.28x10-’ “C’” 
thermal conductivity 3.138 W m -J Y? 3.138 W m -’ “C-l 

C, specific heat 1.171 k.l kg-’ “C’ 1.171 kJ kg-’ OC-’ 
Pm mantle density 3330 kg mV3 3330 kg mm3 

c 
water density 1000 kg me3 1000 kg rnT3 
ridge depth 2600m 2500 m 

GDHl model parameters from Stein and Stein [105]; PSM from Parsons and Sclater [84] 

ment distribution, topographic basement relief, and local 
hydrological effects [ 1, 35, 41, 601. Perhaps the most 
spectacular evidence for hydrothermal circulation is 
found in the “black smoker” vents of superheated water 
(at -350°C) at the ridge crest with the associated bio- 
logical communities [e.g. 311. The circulation is 
thought to be divided into two primary stages [39, 691. 
Near the ridge axis, “active” circulation occurs, during 
which water cools and cracks the rock, and heat is 
extracted rapidly by high temperature water flow [40, 
851. Once cracking ceases, “passive” circulation tran- 
sports lower temperature water. 

lation to cease are sufficient overlying sediment to seal 
off the crustal convective system (and hence which no 
exchange of water between the crust and ocean due to 
the integrated permeability of the sediment column) and 
age-dependent properties resulting in decreasing poros- 
ity and hence permeability of the crust due to hydroth- 
ermal deposition of minerals, which also is assumed to 
change seismic velocity in the uppermost layer of the 
crust [5, 471. It was proposed that to reach the sealing 
age for a given heat flow site either about 150-200 m of 

The amount of convective heat transport can be 
estimated from the difference between the observed and 
predicted heat flow [119]. Of the predicted global oce- 
anic heat flux of 32 x lo’* W, 11 f 4 x lo’* W or 34 z!- 
12% occurs by hydrothermal flow [107]. On a global 
basis -26% of the hydrothermal heat flux occurs for 
ages less than 1 Ma and -33% occurs for ages greater 
than 9 Ma (Table 4). 

Table 3. Oceanic Heat Flow Predicted from a 
Plate Model and Observed with Given Uncertainties 

due only to Data Scatter 

Average Heat Flow (mW m-*) 
Age (Ma) 

The hydrothermal water flux decreases with age and 
then is assumed to stop at the sealing age, defined when 
the observed and predicted heat flow are approximately 
equal. The fraction of mean observed heat flow to that 
expected for cooling plate models gradually rises from 
about .4 for the youngest lithosphere to about 1 in an 
approximately linear fashion until the sealing age at 
which it remains 1 thereafter. For the global heat flow 
data the sealing age is estimated at 65 f 10 Ma (Figure 
2) [1071. Because the sealing age is an average value, 
some water circulation may persist beyond it [e.g. 73, 
although the heat transfer is assumed to be primarily 
conductive. Within the uncertainties there are no 
differences for the sealing age between the major ocean 
basins [107]. 

Predicted 
(GDHl Model) 

1020 
721 
510 
204 
136 
98 
77 
66 
60 
56 
53 
51 
50 
49 
48 

Observed No. Data 

o-1 
o-2 
O-4 
4-9 

9-20 
20-35 
35-52 
52-65 
65-80 
80-95 

95-l 10 
110-125 
125-140 
140-160 
160-180 

131 f 93 79 
136 f 99 195 
128 f 98 338 
103 f 80 382 
82 f 52 658 
64 f 40 535 
60 T!C 34 277 
62 3~ 26 247 
61 f 27 398 
59 It 43 443 
57 f 20 230 
53 f 13 417 
52 f 20 224 
51 Ik 14 242 
52 rt 10 67 

Two mechanisms that may cause hydrothermal circu- from Stein and Stein [107] 
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sediment covering the basement rock is required [4] or 
the region about the site should be well sedimented (as 
characterized by the sedimentary environment 
classification of Sclater et al. [98]). The heat flow frac- 
tion for the global data set for either sites with less than 
200 m of sediment or more, or for those within the 4 
categories of sedimentary environments (from poorly to 
well-sedimented sites) show the same linear trend of 
increasing heat flow fraction with age, and within the 
uncertainties the same sealing age [107]. Hence, prob- 
ably neither -200 m of sediment nor well sedimented 
sites are necessary or sufficient for crustal sealing: the 
effect of overlying sediment appears instead to be 
secondary, and is probably most important for the 
young lithosphere. 

GLOBAL HEAT FLOW DATA 

OBSERVED/GDH 1: GLOBAL DATA 
g 1.5 
5 1 
2 0.5 
IA 0 

0 50 100 150 
AGE (Ma) 

Fig. 2. Observed heat flow versus age for the global 
data set from the major ocean basins and predictions of 
the GDHl model, shown in raw form (top) and fraction 
(bonom). Data are averaged in 2-m.y. bins. The 
discrepancy for ages < 50-70 Ma presumably indicates 
the fraction of the heat transported by hydrothermal 
flow. The fractions for ages < 50 Ma (closed circles), 
which were not used in deriving GDHl, are fit by a 
least squares line. The sealing age, where the line 
reaches one, is 65 -+ 10 Ma [107]. 

The hydrothermal circulation has profound implica- 
tions for the chemistry of the oceans, because sea water 
reacts with the crust, giving rise to hydrothermal fluid 
of significantly different composition [119, 1201. The 
primary geochemical effects are thought to result from 
the high temperature water flow observed at ridge axes 
[e.g. 311. Nonetheless, the persistence of the heat flow 
discrepancy to ages of 50-70 Ma indicates that much of 
the hydrothermal heat flux occurs away from the ridge 
axis. This lower temperature off-axial flow is thought 
to have a much smaller geochemical effect than the 
near-axis flow, based on the major element chemistry of 
the fluid [8]. 

2.4 Back-Arc Spreading, Subduction Zones and 
Accretionary Prisms 

Heat flow measurements across western Pacific sub- 
duction zones show patterns of low values from the 
trench axis to the volcanic arc, high and variable values 
over the volcanic zone and values in the back arc region 
similar to those for the major ocean basins of the same 
lithospheric age C3, 1161. However, the depths of mar- 
ginal basins range from that expected to -1 km deeper 
than predicted for their lithospheric ages [71, 82, 1161. 
Some of these depth anomalies may be due to lateral 
transport of heat for very small ocean basins or those 
formed with a short axis of spreading (~200 km) [18]. 
Alternatively, secondary convection associated with 
back-arc spreading may cause greater seafloor depths. 

Accretionary prisms contain accumulations of water- 
saturated sediment. Initial studies with sparsely spaced 
measurements suggested that heat flow was lower than 
average 161, 1161. More recent surveys [e.g. 36, 42, 64, 
1221 with densely-spaced measurements indicate that 
heat flow is highly variable, both within a given prism 
and for different prisms. Many regions of high heat 
flow are associated with upward advection of pore 
fluids, typically found along faults and the bottom 
decollement. This process is probably a factor control- 
ling the prism’s mechanical deformation. 

2.5 Hot Spots 
Hawaii is the type example for hotspot studies, 

because of its size and isolation from other perturbing 
processes (including ridges and other hotspots). The 
observation that heat flow on the Hawaiian swell was 
higher than that predicted for the Parsons and Sclater 
[841 model was initially treated as consistent with the 
elevated heat flow expected for a reheating model [ 113 ] 
but subsequent measurements showed that its heat flow 
hardly differs from that for lithosphere of comparable 
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Fig. 3. (top) Heat flow and heat generation for various 
heat-flow provinces. The intercept is the reduced heat 
flow and the slope is “D” value. (bottom) Plot of re- 
duced heat flow against average surface heat flow for 
the same heat-flow provinces as above. Error bars show 
standard deviation of the data sets. The diagonal line in- 
dicated reduced heat flow of 60% of the average heat 
flow, as indicated by the theory of Pollack and Chap- 
man [82]. A=Central Australia; B=Baltic Shield; 
BR=Basin and Range Province; C=Atlantic Canada; 
E=England and Wales; EU=Eastem U.S.A.; I=India; 
S=Superior Province; SN=Sierra Nevada; Y=Yilgarn 
Block (Australia). After Jessop [50]. 

ages [114] and is only slightly above that expected for 
GDHl [106]. A similar situation for the heat llow 
anomalies applies for the Bermuda [38], Cape Verde 
[33] and, Crozet [32] hotspots. Using the GDHl refer- 
ence model, the small heat flow anomaly thus favors a 
primarily dynamic origin [e.g. 701 for these swells 
rather than a largely thermal origin [e.g. 1131. The 
interpretation favoring a dynamic model is consistent 
with seismological data, which shows no evidence for a 
low velocity zone under the Hawaiian swell [1211. 

3. CONTINENTAL HEAT FLOW 

3.1 Background 
Because the oceanic lithosphere is relatively uniform 

in composition, and little heat is generated within it by 
radioactivity, oceanic heat flow is essentially a simple 
function of age described by the cooling plate model. 
In contrast, continental lithosphere is quite heterogene- 
ous in composition, due to its much longer tectonic his- 
tory. Moreover, the heat flow depends critically on 
radioactive heat production in the crust. The two pri- 
mary effects are thus that continental heat flow is pro- 
portional to the surface crustal radioactivity in a given 
region, and decreases with the time since the last major 
tectonic event 

3.2 Radioactive (Crustal) Heat Production 
The continental crust contains a relatively high den- 

sity of radioactive isotopes, primarily those of uranium, 
thorium, and potassium [109]. Hence, within a region 
the heat flow depends on (1) radioactivity in the crust, 
(2) tectonic setting, and (3) heat flux from the mantle 
below. For a given area, termed a heat-flow province, 
the measured heat flow q varies linearly with the near- 
surface radioactive heat production A, [15, 941. Thus 
we define heat flow provinces characterized by q, the 
reduced heat flow, and a slope D, such that the heat 
flow 

q=%+DA, (4) 

(Figure 3). Initially it was suggested that the D value 
represents a slab of uniform heat production [94]. How- 
ever, because differential erosion within the region 
would invalidate this explanation, the radioactive heat 
production is often treated as exponentially distributed 
with depth, z, or 

A(z) = A,,e-(&) (5) 

[55]. The reduced heat flow appears to be relatively uni- 



Table 4. Oceanic Cumulative Heat Flux 
with Uncertainties due only to Data Scatter 

Age (Ma) Predicted Observed 
1 3.6 0.4 f 0.3 
2 5.1 1.0 f 0.7 
4 7.2 1.8 2~ 1.4 
9 11.3 3.8 i 2.1 

20 15.6 6.5 It 2.7 
35 19.8 9.2 f 3.2 
52 22.7 11.5 f 3.4 
65 24.6 13.3 If: 3.5 
80 26.9 15.6 f 3.7 
95 28.5 17.3 Ik 3.9 

110 29.8 18.7 f 3.9 
125 30.6 19.5 f 3.9 
140 31.5 20.4 rt 3.9 
160 31.9 20.8 f 3.9 
180 32.0 21.0 f 3.9 

Cumulative Heat Flux (1012 W) 

from Stein and Stein [107] 

Hydrothermal 
3.2 + 0.3 
4.1 f 0.7 
5.4 f 1.4 

7.4 f 2.1 
9.1 f 2.7 

10.5 zk 3.2 
11.2 + 3.4 
11.3 f 3.5 
11.3 + 3.7 
11.2 f. 3.9 
11.1 + 3.9 
11.1 If: 3.9 
11.1 + 3.9 
11.1 + 3.9 
11.0 + 3.9 

Fig. 4. For the continental heat flow data set: (fop) Re- 
duced heat flow as a function of age since the last tecto- 
notherrnal event, for different heat flow provinces. Heat 
flow error bars are the uncertainties in reduced heat 
flow and age. BR=Basin and Range; BR’=Basin and 
Range; SEA=SE Appalachians; SN=Sierra Nevada; 
EUS=Eastem US; SP2=Superior; SP1=Superior, correct- 
ed; Bz=Brazilian coastal shield; Ba=Baltic shield; 
BM=Bohemian Massif; U=Ukraine; EW=England and 
Wales; N=Niger; Z=Zambia; Z’=Zambia; WA=Westem 
Australia; CA=Central Australia; EA=Eastem Australia; 
I1=Indian Shield; I’l=Indian Shield; 12=Archean Indian 
Shield. BR’, EA, N, Z, and Z’ were derived from as- 
sumed heat production values. (middle) Heat flow data 
averaged in groups according to age of the last tccto- 
nothermal event at each site. C=Cenozoic, M=Mesozoic, 
LPa=Late Paleozoic, EPa=Early Paleozoic, LPr=Late 
Proterozoic, EPr=Early Proterozoic, and A=Archean. 
(bottom) Heat flow data averaged in groups according to 
radiometric crustal age at each site. In each plot, mean 
heat flow values in each group are plotted as crosses at 
the mid-point of the age range; Boxes around the 
crosses indicate the age ranges for the data and standard 
deviations of the means. The number of data in each 
group are indicated by each box in parentheses. After 
Morgan [78]. 
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form within the heat-flow province and can be inter- 
preted as representing the flux from deep crustal regions 
or at the Moho. On average, the reduced heat flow for 
a province is about 0.6 of the average heat flow (Figure 
3, bottom), suggesting that about 60% of the flux comes 
from the lower crust or below [86]. 

3.3 Continental Heat Flux with Age 
Lee and Uyeda [66] lirst suggested that the continen- 

tal heat flow was age dependent. Subsequent work [e.g. 
89; 11 l] better demonstrated this relationship (Table 5). 
The heat flow within a given continent generally 
decreases with age [99]. The decrease is even clearer 
when the age used is the time since the last tectonother- 
mal event (Figure 4). As with oceanic heat flow, con- 
tinental measurements show a relatively large standard 
deviation. Local conditions such as variations in 
radioactive heat production, sedimentation, erosion, 
topography, water circulation and climate variability add 
to the uncertainties. One method of attempting to 
remove the radioactive signal is to consider the reduced 
heat flux versus age. This parameter rapidly decreases 
with tectonothetmal ages from 0 and 300 Ma (Figure 4, 
top). For older ages (Paleozoic and Pre-Cambrian) the 
reduced heat flow appears to be a relatively constant, 
about 25 mW me2 (.6 HIV) [78, 991. 

3.4 Water Circulation 
In contrast to the oceanic lithosphere, in which little 

is known about water circulation, water circulation in 
the continental crust has been intensively studied. Most 
water flow is driven by hydraulic gradients associated 
with variations in water table elevation and location of 

aquifers [e.g. 671. Near-surface hydrothermal circula- 
tion in the continental crust can also extensively redis- 
tribute heat (for example in Iceland), thus complicating 
analysis of heat flow data. For example, analysis of heat 
flow values for the Snake River PlateaurYellowstone 
hotspot are complicated by extensive ground water cir- 
culation [e.g. 201. 

3.5 Extension, Hotspots and Frictional Heating 
Transient heating of the continental lithosphere can 

occur due to tectonic processes including extension, 
hotspot reheating, and fault motion. Unlike oceanic 
hotspots where heat flow anomalies are calculated rela- 
tive to that expected for the lithospheric age, continental 
anomalies are relative to the surrounding lithosphere not 
affected by the tectonic event. For example, the Snake 
River Plain, a topographic feature resulting from intra- 
plate volcanism and massive magmatic intrusions in the 
uppermost crust starting about 16 Ma, is thought to 
mark the passage of the Yellowstone hotspot. Heat 
flow systematically increases eastward towards the 
recent volcanism from about 75-90 mW mm2 to 90-110 
mW m-*, well above the average North American 
values [16]. In Yellowstone National Park, heat flow 
measurements [79] and geochemical analysis [433 imply 
high heat loss and upper crustal temperatures in the 
most recently active region of volcanism. 

During extension or rifting of continental lithosphere, 
additional heat is added to the near surface by both 
upward advection of heat by magmatic intrusions and 
volcanism, and overall thinning of the crust. The higher 
geotherm, subsidence, and typically rapid sedimentation, 
as the lithosphere cools, facilitates the production of 

Table 5. Continental Heat Flow 

Age (Ma) 
Subaqueous continental undifferentiated 
(lakes, continental shelf and slope) 
Cenozoic sedimentary and metamorphic 
Cenozoic igneous 
Mesozoic sedimentary and metamorphic 
Mesozoic igneous 
Paleozoic sedimentary and metamorphic 
Paleozoic igneous 
Proterozoic 
Archean 

Average heat flow (mW m-*) 
77.7 If: 53.6 

63.9 f 27.5 2912 
97.0 f 66.9 3705 
63.1 f 28.2 1359 
64.2 _+ 28.8 1591 
61.0 f 30.2 403 
57.7 f 20.5 1810 
58.3 f 23.6 260 
51.5 + 25.6 963 

No. Data 
295 

From Pollack et al. [%I. 
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fossil fuels. Regions currently undergoing extension, 
such as the Basin and Range province in the western U. 
S. have higher average heat flow [e.g. 58, 773 and 
reduced heat flow compared to sites with the same aver- 
age radioactive heat generation (Figures 3 and 4). High 
heat flow is also found where Cenozoic rifting has 
formed passive margins or substantially thinned con- 
tinental crust prior to the onset of sealloor spreading 
[e.g. 221. The effect of recent volcanism is apparent 
when comparing the average heat flow of Cenozoic 
igneous regions to Cenozoic sedimentary and 
metamorphic regions. Simple models of the process of 
lithospheric extension, which may produce a rifted con- 
tinental margin or sedimentary basin [e.g. 76, 951, sug- 
gest that although heat is added to the crust, the addi- 
tional heat flow will almost completely dissipate within 
less than 100 m.y. Hence, it is not surprising that heat 
flow for igneous regions are similar to that for sedimen- 
tary and metamorphic regions of Mesozoic or Paleozoic 
ages (Table 5). 

It has been proposed that frictional heating during 
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Fig. 5: Geotherms for old oceanic [105] and old con- 
tinental lithosphere assuming a 50 mW mm2 surface heat 
flow 1861, and a solidus [104]. Radioactive heat pro- 
duction in continental crust results in lower tempem- 
tures at a given depth compared with the oceanic geoth- 
erm. Continental geothenn is calculated assuming only 
conduction, but other modes of heat transfer may be in- 
creasingly significant at depths greater than about 70 km 
B61. 

faulting may provide an additional source of heat to the 
lithosphere, proportional to the product of the velocity 
of the motion and the fault stress. The lirst such study 
for the San Andreas fault [21] suggested that the 
absence of a significant heat flow anomaly implied rela- 
tively low stresses (about 100 bars) over long periods of 
time. More recent heat flow measurements and model- 
ing [58] and recent drilling results for the Cajon Pass 
site [59] support the initial conclusion. 

4. GEOTHERMS 

Continental and oceanic lithosphere are composed of 
very different materials with different tectonic histories. 
The lithospheric thickness, which presumably varies as 
a function of age and tectonic history, can be defined 
based on different properties [e.g. 521, such as mechan- 
ical strength [e.g. 241, seismic velocity [e.g. 801, or 
thermal behavior. Possible thermal definitions include 
the region where conduction is the major heat transfer 
mechanism [e.g. 781, or the region at which tempera- 
ture are less than some fraction of the expected solidus. 

An interesting fact is that the average heat flow for 
old oceanic lithosphere and the oldest continental litho- 
sphere is approximately the same, about 50 mW mm2 
(Tables 3 and 5). Whether this approximate equality is a 
coincidence or reflects a fundamental tectonic fact is an 
interesting question. The issue is complicated by the 
challenge of estimating the geotherm given the surface 
heat flow. The oceanic geotherm within the lithosphere 
is thought to bc a straightforward calculation from the 
cooling plate model. The geotherm changes with age 
until it reaches a steady state, at which time the geoth- 
erm is essentially linear with depth, with a slope equal 
to the surface heat flow divided by the thermal conduc- 
tivity (Figure 5), because the radioactive heat produc- 
tion is small. Beneath the plate a shallow adiabatic gra- 
dient, -0.3”C/km, is generally assumed [108]. The con- 
tinental geotherm, however, depends on the assumed the 
variation of radioactive heat production with depth. 
Assuming only conductive heat transfer, steady-state 
conditions and given two boundary conditions, the sur- 
face heat flow qs and a surface temperature T,, the 
geotherm T(z) is 

T(z) = T, + $z - gz*. 

Hence for a given surface heat flow and temperature, 
the temperatures at depth will be lower the higher the 
radioactive heat production. The continental geotherm 
in Figure 5 [86] assumes a heat production of 2.5 
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10dwmm3 for the upper 8 km, an order of magnitude 
less for the lower crust and even less for the mantle 
below. The resulting geotherm suggests that the thermal 
thickness of old continental lithosphere exceeds that of 
old oceanic lithosphere. These relative thicknesses 
agree with some assessments [e.g. 521 but is opposite 
the conclusions of Sclater et al. [99, NO] who suggested 
approximate equality of the geotherms, in part due to 
their cooler oceanic model. Given the uncertainties in 
the estimated geotherms, due in large part to the largely 
unknown variation in both heat production and other 
physical properties with depth, the question of what the 
equality of old continental and oceanic heat flow means 
remains unresolved and possibly even unresolvable. 

5. GLOBAL HEAT LOSS 

Prior to the development of plate tectonics, it was 
thought that the average oceanic heat flow might be 
lower than that for the continents because the basalt of 
the oceanic crust has less radioactive isotopes compared 
to continental material. In fact, the average oceanic heat 
flow (101 mW mV2) is higher than for continents (65 
mW mb2) because of the plate cooling process. Thus 
oceanic and continental heat flow account for about 
70% and 30% respectively of the integrated surface heat 
flux (Table 6), yielding a global average of 87 mW mm2 

1. Abbott, D. H., C. A. Stein, and 0. 
Diachok, Topographic relief and 
sediment thickness: their effects on 
the thermal evolution of oceanic 
lithosphere, Geophys. Res. Left., 19, 
1975-1978, 1992. 

21 Akaogi, M., E. Ito, and A. Navrot- 
sky, Experimental and tbermo- 
dynamic constraints on phase transi- 
tions of mantle minerals (abstract), 
Abstr. 28th Internat. Geol. Gong., 1, 
26, 1989. 

3. Anderson, R. N., 1980 Update of 
heat flow in the East and Southeast 
Asian seas, in The Tectonic and 
Geologic Evolution of Southeast 
Asian Seas and Islands, Geophysi- 
cal Monograph Series, 23, edited 
by D. E. Hayes, pp. 319-326, Am. 
Geophys. Un., Washington, D. C., 
1980. 

Table 6. Global Heat Flow 

v 

Total global heat loss= 4.42 & 0.10 X 1013 W 
From Pollack et al. [88]. 

or a total heat loss of 4.42 x 1013 W [88]. These values 
are about 4-8% higher than previous analyses of the 
global heat flow dam set [e.g. 34, 99, 1171. The more 
diificult to estimate total heat production within the 
earth, 27.5 x 1012 W (from 3.47 x lo-* cal g-’ yf’ 
[Table 10; 109]), is often divided by the global heat 
loss, giving a value of about 0.6. This quantity, known 
as the Urey ratio, indicates that radioactivity can 
account for about 60% of the earth’s heat output, and 
hence is important for modeling the thermal evolution 
of the earth [291. 
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