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Mantle Temperatures and

Thermodynamic Properties

4.1 Heat Conduction and the Age of the Earth

4.1.1 Cooling o;f an Isothermal Earth

Determinations of the temperature distribution within the Earth have long been a major
fbcus of the physical sciences. Early in the nineteenth century it was recognized from
temperature measurements in mines, that the temperature I increased with depth y at a
rare dT ldy : 20-30Kkm-r, the geothermal gradient. At that time, the heat flow at the

Earth's surface implied by the geothermal gradient was attributed to the secular cooling of
the planet, an inference that, as it turns out, was partially correct.

William Thompson (later Lord Kelvin) (Figure 4.1) used this assumption as the basis for
his estimate of the age of the Earth (Burchfield, 1975). Thompson assumed that the Earth
was conductively cooling from a hot initial state. He applied solutions for the cooling of a

Figure 4.1. Photograph of William Thompson (Lord
Kelvin).
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4.1 Heat Conduction and the Age of the Earth 119

semi-infinite half-space to determine the time required to establish the present geothermal

gradient. The distribution of temperature T aI shallow depths can be modeled as one-

dimensional, time-dependent heat conduction in the absence ofheat sources (see Chapter 6):

In this heat conduction equation, p is the density, c is the specific heat, k is the thermal
conductivity, y is the depth, and t is time. We consider a semi-infinite half-space defined by
y > 0 which is initially at a temperature 11. At t - 0, the surface y : 0 is instantaneously

subjected to the temperature Ig and the surface temperature is held at Z0 for t > 0.

The solution to this ploblem, which serves as the basic therrnal model of the oceanic

lithosphere, is best obtained by introducing the nondimensional similarity variables

^) -01 0-1
l/L ^ -^ ^-)dt oy'

tt - t0

n: *' ) (rt\L/z
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where r - k/pc is the thermal diffusivity. The solutions at different times are "similar"
to each other in the sense that the spatial dependence at one time can be obtained from the

spatiai dependence at a different time by stretching the coordinate y by the square root of
the ratio of the times.

Derivatives with respect to the variables I and y transform to derivatives with respect to

the variable ri using the chain rule as follows:

(4.1.1)
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Substitution ot (4.1.2) to (4.1.6) into (4.1.1) gives

with the boundary cond itions
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(4.1.8)

(4.1.e)

The introduction of the similarity variable reduces the partial differential equation (4.1.1)

to an ordinary differential equation (4.I.7) rn the variable 4. This is appropriate as iong as

the similarity solution satisfies the required boundary conditions expressed as (4.1.8) and
(4.1 .9) in terms of the similarity variables.

Equation (4.1.7) can be integrated by letting

d0

drj
(4.1.10)
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Upon rewriting (4.1.7) we obtain

, tdo
-,taq:i 0 (4.1.11)

Integralion is straightforward wjth the result

-n2 :lnö -lncr $1.12)

where - ln c1 is the constant of integration. It follows that

Q : ,1"-a' :49 (4.1.13)
an

Upon integration we obtain

fn
0:qle-a''dn,+7 (4.1.14)' 

Jo

where 4' is a dummy variable of integration and the condition 0 (0) : 1 was used to evaluate

the second constant of integlation. Since I (oo) : 0, we must have

fc€
o:crl e-n''dn'+l (4.1.15)
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The definite integral is
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Thus the conslanl ct : -2/ Ji and
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The definite integral is the definition of the enor function

) f4
erf14)=|le-n-d4' (4.1.18)

\/ 1T Jo

Thus we can rewrite I as

0:l- erf(4): srfs14; (4.1.19)

where erfc(4) is the complementary elror function. Values of the error function and the

complementary error function are listed in Table 4.1; the functions are also shown in
Figure 4.2.

The solution for the temperature as a function of time t and depth y is (4.1.19). It can be

written in tems of the original variables as

Tt-T "/ ) \-. --'- :errcl --- 
- 

I (4.1.20)
Tt - To \2Jxt )
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Table 4.1. The Etor Function and the
C omp le menturry Eruor F unc tio n

erf 4 erfc 4
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U

0.02

0.04

0.06

0.08
0.10

0.15

0.20

0.25
0.30

0.35

0.40
o.45

0.50

0.55
0.60

0.65
0.70

o.75

0.80

0.85
0.90

0.95

1.0

1.1

1.2

1.3

r.4
1.5

1.6

r.7
1.8

1.9

2.0
2.2
2.4

2.8

3.0

0

0.022565

0.045111

0.06'7 622
0.090078

0.t 12463

0.161996

0.222703

0.276326
0.328627

0.319382

0.428392
0.4'7 5482

0.520500
o.563323

0.603856

0.642029
o.677801

0.71i156
o.7 4zt0l
0.770668

0.796908

0.820891

0.84270r
0.880205

0.910314

0.934008
0.952285

0.966105

0.976348
0.983790

0.989091

0.992790

0.995322
0.998137

0.999311

0.999764

0.999925
0.999978

1.0

0.977 435

0.9s4889

0.932378

0.909922

0.887537

0.832004

0.777297

0.723674
0.671373

0.620618
0.571608

0.524518

0.479s00
0.436677

0.396144
0.35'7971

0.322199

0.288844
0.257899

0.229332

0.203092

0.179109
o.157299

0.119795

0.089686
o.065992

0.0477 15

0.033895
o.023652

0.016210

0.0i0909
0.0072r0
0.004678
0.001863
0.000689

0.000236

0.000075
0.000022

At y : 0, the complementary errorfunction is 1 and T : To.As y -+ oo or I : 0, etfc
is 0 and T - 71. The general solution for 0 or (Ty - T)lQr - Zo) is shown as erfc (4) in
Figure 4.2.

Regions in the Earth in which heat diffusion is an important heat transfer mechanism
are usually referred to as thermal boundary layers. In this case the thickness of the therrnal
boundary layerrequires an arbitrary definition, since the temperature T approaches the initial
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o.4 Figure 4.2. The error function erf 4 and the complemen-

tary error function erfc 4 as a function of 4.

temperature z1 asymptotically. we define the thickness of the boundary layer )'r as the value

of ) where e : O.1. This thickness increases with time as the half-space cools. However,

the condition t? : 0.1 defines a unique value of the similarity variable ryr. From (4.1.19)

and Table 4.1 we obtain

4r:erfc-l(0.1):1.16 (4.1.21)

and from (4.1.3) we get

Jr :2nr,tQi : Z32vm (4.r.22)

The thickness of the thermal boun dary layer is2.32times the characteristic thermal diffusion

distance JZ7.
The heat flux 4s at the surface ) : 0 is given by differentiating (4'1'20) according to

Fourier's law of heat conduction and evaluating the result at ) : 0:

0.2

0.0

/ar\ k(Tr-rü d "so= kl ^ | : -=-- - rc(r nt.=o
\ d) ,/ ,,:0 t\/ K

k (Tt - To)

"rtC rt
(4.r.23)

Equation (4.i.23) shows that the surface heat flux is proportional to the ploduct of conduc-

tivity ft and the temperature difference (n - f0) and inversely proportional to the thermal

boundary layer thickness. With the standard definition q - -k @T /Ay), the upward heat

loss would be negative. Since the Earth's surface heat flow is always taken to be a positive

quantity, the minus sign is not included in (4.1.23).

On the basis of (4.1.23), Thompson proposed that the age of the Earlh rs is given by

t41 )4\

where (ä T/äy)s is the present geothermal gradient. With (äZlay)o - 25 Kkn- ', T1-Ts ==

2,000 K, and r : 1 mm2 s- 1, the age of the Earth from (4.1.24) is /o : 65 Myr. Thompson

anived at this age using the geothermal gradient measured in mines. The values of the

temperature difference and the thermal diffusivity used were also reasonable. Based on the

(Tr - Tü2
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laws of physics known at that time, the mid-nineteenth century, the age given by Thompson
was reasonable. We now recognize, however, that the continental crust has a near-steady-

state heat balance due to the heat generated by the heat-producing isotopes within the crust

and the mantle heat flux frorn below. Ironically, had Thompson known to apply the model
to the oceanic lithosphere, he would have obtained very nearly its correct mean age.

t1.1.2 Cooling of a Molten Earth

Thompson iater modified the conductive cooling model ofthe Earth to include the hypothesis

that its interior was initially molten. The existence of many surfaca volcanoes suggested

to him that the Earth was cooling from an initially molten state. In order to model the

solidification problem he considered the instantaneous cooling of a semi-infinite fluid half-
space initially at the solidification temperature. The solution to this problem had been given

by Stefan (1891).
The solidification problem is illustrated in Figure 4.3. The melt has solidified to the depth

y - y.(l). We assume that there is molten material of uniform temperature Z, everywhere

below the growing solid surface layer. The fact that the molten region does not extend

infinitely far below the surläce is of no consequence for the solution. We solve the heat

conduction equation (4.1.1) in the interval 0 < y < y.(r) subject to the conditions Z : Zo

aty - 0, T :Tn aIy: ym?'), and y* : 0 at / : 0. The position of the solidification
boundary is a priori an unknown function of time. As in the case of the sudden cooling of
a semi-infinite half-space, there is no length scale in this problem. For this reason, we once

again introduce the dimensionless coordinate ry : y /2,1Qi as rn (4.1.3); it is also convenient

to introduce the dimensionless temperature 0 : (lT - Tü / (T^ - Zo) similar to (4. 1.2).

The dimensionless coordinate 4 is obtained by scaling the depth with the thermal diffusion
length "1Qi since there is no other length scale in the problem. Similarly, the depth of the

solidification interläce yr? must also scale with the thermal diffusion length in such a way
that y,,t I \Qt rs a constant. In other words, the depth of the solidification boundary increases

with time proportionately with the square root of time. We have used dimensional arguments

to determine the functional form of the dependence of y, on t, a nontrivial result. Since

n * y/2\Ei and y. is proportional to Jrt, the solidification boundary conesponds to
a constant valte 4- : yr,/2,/n of the similarity coordinate 4. We denote this constant

value by \m : ),. Thus we have

Y- : DJrct (4.r.2s)

Figure 4.3. Growth of a solid layer at the surface of
a solidifying magma. The surface y : 0 is main-
tained at 7' : 70. Initially the half space y > 0
contains a magma at its melt temperature 4,,. The
lower boundary of the solid layer )] : )',?(/) is

shown.

Upper surface 
To

Solid

| ,n"."t i"t"t"ttl;*n*" | \I '"* ll
Tm
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With our deflnitions of d and 4 it is clear that the heat conduction equation for 0(4) ts

identical with (4.1.7), whose solution we already know to be proportional to erf(4). This

form of solution automatically satisfles the condition e :0(T : f0) on 4 - 0O : 0). To

satisfy the remaining condition that I : l(T - T^) aI \ : nm(y -- i.) : l, we need

simply choose the constant of proportionality appropriately. The solution is

A- efiQ7)
(4.r.26)

erf (.i.)

which gives the temperature in the solidified layer 0 < y < y-. In the molten region y > y,r,

T =. T*.
The constant I is determined by requiring that the latent heat liberated at the solidification

boundary be conducted vertically upward, away from the interface. In time ät, the interface

moves downward a distance (dyn/dt)lt.In so doing, a mass per unit area p(dy*ldt)8t
is solidified, thus releasing an amount of latent heat pL(dy*ldt)är per unit area (l is the

latent heat liberated upon solidification per unit mass). Conservation of energy requires that

this heat release be conducted away from the boundary at precisely the rate at which it
is liberated. The heat cannot be conducted downward because the magma is at a constant

temperature. Fourier's law of heat conduction gives the rate of upward heat conduction per

unit time and per unit area at y : )m as k(07 /}y)t:t.. Multiplication of this by 6t and

equating rtto pL(dy*/dt)6t gives the equation for finding ).:

s,, / A'r \pLT:-(;)_
' ' f-tm

From (4.1.25) the speed of the solidification boundary is

- To)

(4.1.27)

(4.1.28)

\4.r.29)

dY* :
dt

and the temperature gradient at ) : ),? is

LJK
tr

(H)*/az\
I u, /,:,. : (#),:,_=,

(T*-Ts) 2 ^ yz

z.ldt Ji'
Substitution of (4.1.28) and (4.1.29) into (4.1.27) gives

LJi "-Lt (4.1.30)
c (7,, - Ts) .t erf ()')

a transcendental equation for determining }" Given a numerical value of the left side of
(4.1.30), .1. can be found by iteratively calculating the right side of the equation until agree-

ment is found. Alternatively, the right side of (4.1.30) can be plotted as a function of ]", as

in Figure 4.4, and the solution for a parlicular value of the left side of the equation can be

found graphically.
On the basis of the solution to the solidification problem, the age of the Earth is given by

(T,n - Tü2

erf (.r,)

,0:
r r t}T /lyt$ ert2 (It

(4.1.31)
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Figure 4.4. The right side of the transcen- ffi
dentrl equflion t4. l.J0t lbr detennining the

growth of a solid layer at the surface of a
solidifying nagma as a function of l.
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By comparing (4.1.31) and (4.1.24) we see that solidification increases the estimate of the

ug" ot ttr" Earth by the factor 1/ erfz ()'). For I : 400kJkg-1, 6 : l kJkg-l K-r, and

T^ - To: 2,000 K, we find from (4.1.30) that ), : 1.06 and erf(r') : 0.865. Thus'

including solidification increases the estimate of the age of the Earth by a factor of 4/3.

The calculations made by william Thompson were front page news in the London papers

of the time and a debate raged over the age of the Earth. on one side wele the clergy of the

Church of England led by Bishop Wilburforce, who interpreted the Bible as giving an age

of the Earth of some 4,000yr. On the other side were the noted geologists of the day led by

James Hutton, who argued that the sedimentary and fossil records required a much greater

age for the Earth. However, they could not place quantitative limits on their estimates and

much of the scientific establishment of the day accepted Thompson's estimate of the Earth's

age, 50-100Myr, as more reliable since it was based on seemingly reasonable theoretical

arguments.
It was only with the discovery ofradioactive elements and the implications for heat sources

distributed within the Earth that a new approach to the thermal süucture of the Eafth was

taken. Holmes (1915a,b, 1916) not only suggested that the decay of radioactive elements

heated the interior of the Earth, but he also used their decay constants to suggest that the age

of the Earth was billions of years.

4.1.3 Conductive Cooling with Heat Generstion

The concept of secular cooling was subsequently replaced by the concept of a steady-state

heat balance. The heat flux from the interior of the Earth was thought to be balanced with the

heat generated by the decay of the radioactive elements. The most popular model involved

a near-surfäce layer of thickness )1 with a uniform rate of heat production per unit mass 11

overlying an interior totally depleted in the heafproducing elements. Again it was assumed

that heat transport was by conduction.
On the assunption that heat is transporled (conducted) only in the vertical direction and

that there are no time variations, the heat conduction equation with heat sources can be

wntten as

,12 To:k- + pH
ay' \4.1.32)
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For the boundary conditions T : To at ):0 and dT /dy -- 0 aty: y1, (4.1.32) canbe
integrated to give

t -.2,(y'y +) (4.1.33)
\ z/
of the layer is prescribed to be the mantleIf, in addition, the temperature at the base

temperature Z1 , we have

-- , 2k (Tt - To)

Since the surface thermal gradient @f /dy)o can also be prescribed, we find

2 (71 - To)

rr-
- To)

DIA,:To+ 
t<

(4.r.34)

@r /dy
k

)o

t)r12

\dr/.

(4.1.3s)

(4.r.36)

(4.1.37)

2P (Tt

r -rsrr(q) [t
\a)./o L

- 4@:6(#),)
For Z1 - Zo : 1,300K and(dTldy)o: 25Kkm-', (4.1.35) gives )r : 104km. Further,

for p : 3,3ggtrgm-3 and ft - 3.3Wm-l K 1, (4.1.36) gives Il :2.40 x 1g-t01ytr*-t.
The resulting temperatue profile is given in Figure 4.5. The thickness of the layer is about

a factor of 3 larger than the thickness of the continental crust, but the concentration of
heat-producing elements is very nearly that of typical continental rocks.

The basic hypothesis of an upward concentration of heat-producing elements with steady-

state heat conduction was the generally accepted explanation for the temperature distribution
in the Earth's interior from about 1920 to the late 1960s. It provided an explanation for the

40
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Figure 4.5. Near-surface temperature distribution in the Earth assuming a conduction profile with the heat-

producingelementsuniformlydistributedintheregion0<)<)l.OntheassumptionthatdT/dy:0atl:
yt andfor (dT/dy)o:25Kkm r, Zr Zo: l,300K,wehavell:104knändH:2.4 x i0 r0Wkg-l.
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temperature gradient in the continental crust, but allowed for the solid upper mantle required

by seismic studies.
The hypothesis that the heat-producing elements were strongly concentrated in the crust

led to the prediction that the surface heat flow in the oceans, where the crust was known to be

thin, would be considerably lower than the surface heat flow in the continents. Measurements

by Revelle and Maxwell (1952) in the Pacific and by Bullard (1954) in the Atlantic showed

that oceanic heat flow was very nearly equal to continental heat flow, so the prediction was

not valid. Bullard et al. (1956) attributed this equality of heat flow to mantle convectron.

Nevertheless it took another 15 years before the model with an upward concentration ofheat

sources and steady-state heat conduction was discarded'

4.1.4 Mantle Convection and Mantle Temperatures

The acceptance of mantle convection in the late 1960s provided a natural explanation for the

high thermal gradients near the Earth's surface; they are a consequence of thermal boundary

layers associated with mantle convection. Beneath the boundary layers heat transport is

primariiy by convection and the thermal gradient at depth is nearly adiabatic.

Three distinct thermal regimes thus occur within the mantle-,crust system (Jeanloz and

Morris, 1986). First, there are nearly adiabatic regions, where advective heat transport by

vertical motion dominates all other heat transfer mechanisms. Most of the lower mantle

appears to be in this category, as are the upper mantle beneath the lithosphere and portions

of the transition zone - roughly 907o of the mantle (Ito and Katsura, 1989). Practically all of
the outer core is in this category as well. These regions are characterized by nearly isentropic
(adiabatic) radial variations of temperature. Second, there are regions where heat transfer by

advection is roughly equal to heat transport by conduction. These are the thermal boundary

layers described in the previous section. Included in this category are oceanic lithosphere,

part of the D// layer at the base of the mantle, and part of the subcrustal lithosphere beneath

continents. There also may be interfacial thermal boundary layers within the transition zone.

Finally, there are regions where conductive heat transport dominates, called conduction

layers. The continental crust and the upper mantle attached to it are the most important

examples of this group. Altogether, conductive layers comprise less than 27o of the volume

of the Earth.
Mantle convection can account for virtually all of the known temperature structure in the

nearly adiabatic advective regions and thermal boundary layers. Taking into consideration the

near-surface concentration of radioactive heat sources, it is possible to explain temperatures

in the continental crust as well. This is certainly one of the major successes of convection

theory.
The precision with which temperatures are known degrades with depth, and reflects the

increased uncertainty in composition and thermodynamic parameters in the deep mantle and

core. At the present time, lithospheric temperatures can be estimated to within about *107o.

The uncertainty increases with depth, and in the lower mantle and the core reaches perhaps

130%, or about *1,000K. Unlike seismic structure, lateral variations in temperature are

not small perturbations to the spherically averaged geotherm. In the upper mantle, lateral

temperature variations approach *50vo of the spherical average temperature. The three-

dimensional thermal structure of the mantle is closely connected to the pattern of mantle

convection. Anomalously high temperatures are associated with regions of ascending flow,

while anomalously low temperatures characterize regions with descending flow, such as

subduction zones.
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In addition to temperature, an understanding of mantle convection requires a knowledge
of other thermodynamic parameters and properties, including density p, pressure p, specific
heats co and cr, thermal expansivity a, thermal conductivity ft, thermal diffusivity r, and the
Grüneisen parameter y. The thermodynamic properties of mantie phase transformations,

including solid-so1id and solid-liquid reactions, are also imporlant. Some of these parame-

ters are reasonably well constrained for the upper mantle by laboratory measurements and
inferences drawn from geophysical data. At greater depths, however, the situation changes.

Some properties, such as density, are known from seismology, while others, such as the spe-

cific heats, are well constrained by solid-state theory. Others, such as thermal conductivity,
are poorly known.

4.1.5 Surface Heat Flob'and Internal Heat Sources

Heat escaping from the Earth's interior is, in large part, brought to the surface by mantle
convection. The Earth's surface heat loss is therefore a directly observable measure of its
internal convective activity and thermal structure. The total heat flow from the interior of
the Earth Q is given by

Q - 4cAc +4oAo (4.1.38)

where 4. is the mean continental heat flux, A. is the area of the continents, qo is the
mean oceanic heat flux, and A, is the area of the oceans. The distribution of the Earth's
sudace heat flux has been shown in Figure 2.8; values of {" and Qo have been given

by Pollack et al. (1993). The area of the continents, including the continental margins,
is A" : 2 x 108km2. Multiplication of this by % : 65mWm-2 gives the total heat

flow from the continents Q, : 1.30 x 1013 W. The area of the oceans, inciuding the

marginal basins, is Ao : 3.7 x 108 km2. Multiplication of this by 4o : 707 mWm-2
gives the total heat flow from the oceans Q" : 3.13 x 10ll W. With O : Qo I Q",
we find Q eqttal to 4.43 x 1013 W. Accordingly, the mean suface heat flow for the
Eafih 4r is given by 4.43 x 1013 W divided by the Earth's suface area of 5.1 x 108 km2,
Ord-: ö/mWm -.

Ä substantial part of the heat lost through the Earth's surface originates in the interior of
the Earth by the decay of the radioactive elements uranium, thorium, and potassium. Some
part of the surface heat loss must also come from the overall cooling of the Earth through
geoiogic time. An upper limit to the concentration of radioactive elements in the Earth can

be derived by attributing all the surface heat loss to the radioactive heat generation. The
upper bound to the mean heat generation per unit mass 11 is then given by

H- (4.1.39)

wherc M is the mass of the heatproducing material in the Earth. If we assume that the

entire mass of the Earth, 5.97 x I02a kg, is involved in radiogenic heat generation and take

Q : 4.43 x 1013 w, we find an upper bound of H - 7 .42 x 10 12 wkg-I. However, on
the basis of geochemical studies, it can be argued that the core cannot contain a significant
fraction of the heat-producing elements in the Earth. In this case, the mass in (4.1.39)
should be the mass of the mantle, 4.0 x 102akg, and the upper bound becomes 11 :
1 1.1 x 10 t21ytrn-l.

O
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A reduction must be made in the value of 11 appropriate to the mantle, since a substantial
fraction ofthe heat lost from the continents originates in the highly concentrated radioactive
isotopes of the continental crust. We estimate that of the mean continental heat flux of
65mWm 2, 28mwm-2 can be attributed to the mantle and 37mWm-2 to radioactive
isotopes in the crust. This crustal contribution corresponds to a totai heat flow of 7.4 x 1012 W,
or lJ Vo of the totai surface heat flow. Reduction ofthe mantle heat oroduction bv this amount
gives 11 : 9.22 x 10-12 Wkg-l as an upper bound to the mean heat generation rate per
unit mass of the mantle.

Only a fraction of the Earth's present surface heat flow can be attributed to the decay
of radioactive isotopes presently in the mantle. Since the radioactive isotopes decay into
stable isotopes, heat production due to radioactive decay decreases with time. For example,
we show below that the heat production three billion years ago was about twice as gleat
as it is today. Because less heat is being generated in the Earth through time, less heat is
also being convected to the surface. Thus, the vigor of mantle convection decreases with
the age of the Earth. Since the strength of convection is dependent on viscosity, and the
viscosity of the mantle is a sensitive function of its temperature, a decrease in the heat flux
with time leads to a decrease in the mean mantle temperature. This cooling of the Earlh in
tum contributes to the surface heat flow. We consider this problem in detail in Chapter 13,

and estimate that about 80% of the present surface heat flow can be attributed to the decay
of radioactive isotopes presently in the Earth while about 20Vo comes from the cooling of
the Earth. If we reduce the above upper bound to the present mantle heat production rate

accordingly, we obtain H :1 .38 x 10 12 Wkg-l as an estimate of the actual present mean
rate of radiogenic heat production per unit mass in the mantle.

Radioactive heating of the mantle and crust is attributed to the decay of the uranium
isotopes 23sg un6 238U, th" thorium isotope 232Th, and the potassium isotope aoK. The
rates of heat production and the half-lives 2172 of these isotopes are given in Table 4.2. At
the present time natural uranium is composed of 99.287o by weight 238U and 0.7lTo 23srJ.

Natural thorium is 1007o 232Th. Natural potassium is composed of 0 .\IIgqo40K.The present
rates of heat production of natural uranium and potassium are also given in Table 4.2.

The ratios ofpotassium to uranium and thorium to uranium arc nearly constant in a wide
range of terrestrial rocks. Based on these observed ratios we take Cf /CY : 104 and

6n tc| : 4, where Cö, Cön, and Cou are the present mass concentraiions of potassium,
thorium, and uranium, respectively. The total present heat production rate per unit mass I1g

Table 4.2. Rates of Heat Release H antl Half-lives t112of the
Important Radioactive Isotopes in the Earth's Interiof

Isotope H
(wkc-1)

Concentration, C
( kckc-r)

rr l2
ryr.,

238g

2359
9.46 x 10 s

5.69 x 10-a
9.81 x 10-5
2.64 x l0 s

2.92 x l0-5
3.48 x 10-e

4.47 x l}e
7.04 x 108

i.40 x 1010

1.25 x 10e

30.8 x 10 e

0.22 x l}-e
31.0 x 10 "
124 x l}-e

36.9 x 10 e

31.0 x 10-5

U
-"-ln
40K

K

d Heat release is based on the present mean mantle concentrations of
the heat-producing elements.
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is related to the heat generation rates of the individual radioactive elements by

IT^ - (4.1.40)

With 116 : 7.38 x 10- 12 Wkg- I and the otherparameters as given above and in Table 4.2, we
find that Cou : 3.1 x 10 8 kgkg-l or 31ppb (parts per billion by weighr). These preferred
values for the mean mantle concentrations of heat-producing elements are also given rn
Table 4.2.

The mean heat production rate ofthe mantle in the past can be related to the present heat
production rate using the halflives of the radioactive isotopes - see Section 12.4.I. The
concentration C of a radioactive isotope at time / measured backward from the present is
related to the present concentration C6 and the halflife of the isotope 2172 by

*"("*#"*.$".)

x 1o-4cK1r'4oK""r(#)

c: co.*p(tln2)
\ n/z /

Thus, the past mean mantle heat production rate is given by

H :0.9927C3 H' 
t'*r(#)

+0.0012Cy H"".-o(#)

+ cÄharh*r(S)

(4.1.41)

+ 1.28 (4 | 4)\

The rate of mean heat production based on (4.1.42) and parameter values in Table 4.2 is
plotted as a function of time before the present in Figure 4.6. The past contributions of the
individual radioactive elements are also shown. It can be seen that the rate of heat production
3 Gy,r ago was about twice the present value. At the present time heat is produced primarily
by 238U and232Th, but in the distant past 235U and 40K were the dominant isotop", b""uur"
of their shorler half-lives.

The concentrations of the heat-producing elements in surface rocks vary considerably.
Some typical values are given in Table 4.3. The mantle values from Table 4.2 are included
for reference. Partial melting at ocean ridges depletes mantle rock of incompatible elements
such as uranium, thorium, and potassium. These incompatible elements are concentrated in
the basaltic partial melt fraction. As a result, the oceanic crust (tholeiitic basalt) is enriched in
these elements by about a factor of 4 relative to the undepleted mantle. Peridotites that have
been depleted in the incompatible elements are sometimes found on the surface of the Earth.
A typical example ofthe small concentrations of the heat-producing elements in a "depleted"
peridotite is given in Table 4.3. Processes that lead to the formation of the continental crust,
such as the volcanism associated with ocean trenches, further differentiate the incompatible
elements. The concentrations of the heat-producing elements in a typical continental rock
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Figure 4.6. Mean mantle heat production rates due to the decay ofthe radioactive isotopes 238g' 23sIJ,23216,

and {K as functions of time measured back from the present.

Tabfe 4.3. Typical Concentrations of the Hedt-producing Elements in Several

Rock Types and the Average Concentrations in Chondritü Meteorites

Rock Type Concentration

U
(ppm,

Th
(ppm.,

K
(vo)

Reference undepleted mantle

"Depleted" peridotites

Tholeiitic basalt

Granite

Shale

Average continental crust

Chondritic meteorites

0.031

0.001

0.9
4.7

3.7

1.42

0.012

0.124
0.004
2.7

z0
12

5.6
0.042

0.031

0.003

0.83

2;7

1.43

0.085

such as a granite are quite variable, but in general they are an order of magnitude greater than

in tholeiitic basalts. Representative values of concentrations in granite are given in Table 4.3.

It is generally accepted that the chondritic class of meteorites is representative of primitive

mantle material. The average concentrations of the heat-producing elements in chondritic

meteorites are listed in Table 4.3. The concentrations of uranium and thorium are about

a factor of 2 less than our mean mantle values, and the concentration of potassium is about

a factor of 3 larger. The factor of 6 difference in the ratio ctr lcy is believed to represent a

fundamental difference in elemental abundances between the Earth's mantle and chondritic

meteorrtes.
In the next two Sections we will consider the structure of the upper thermal boundary layer

comprising the oceanic and continental lithospheres. These boundary layers are relativeiy

thin with thickness between 0 and about 200km. In determining these thermal stlxctures

we will neglect adiabatic changes in tempefature. Since the adiabatic gradient is only about

0.4 Kkm- I this is a reasonable approximation. A systematic treatment of this approximation

will be given in Chapter 6.
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4.2 Thermal Regime of the Oceanic Lithosphere

The oceanic lithosphere is the upper thermal boundary layer of the convecting mantle. It
is formed at accretional plate margins by the cooling of hot mantle rock. The oceaniq
lithosphere is convected away from ridge crests at the spreading rate deduced from the
pattern of magnetic anomalies on the seafloor (see chapter 2). The oceanic lithosphere
thickens with time as the upper mantle cools by conduction and by hydrothermal heat loss
to the oceans. The resulting thermal contraction produces an increase in seafloor depth with
crustal age in the direction of seafloor spreading. Accompanying the increase in seafloor
depth with crustal age are decreases in surface heat flow and a decreasing geoid height
with age. It has been established that these trends do not continue unbroken onto the oldest
oceanic lithosphere. Instead, there is a graduai transition in the vicinity of 70-l00Myr
crustal ages, which appears to separate two different thermal boundary layer regimes. For
crustal ages less than 70Myr, the statistical variation in seafloor depth can be explained by
a cooling half-space model. In this model, the depth of the water column, relative to its
depth at the ridge crest, increases with the square root of the crustal age. The actual seafloor
topography approximates this behavior at young ages (Parsons and Sclater, 1977). Atgreater
ages, seafloor depth increases more slowly, on average. A similar trend is observed in geoid
heights. The geoid height decreases linearly with crustal age to about 50Myr in the North
and South Atlantic and in the Indian Ocean (Sandwell and Schubert, 1980).

Interpretations of surface heat flow are more complex. Heat flow on the ocean floor is
obtained from many thousands of point measurements and is subject to large variability.
variability in heat flow can be reduced by the careful selection of measurement sites and
appropriate averaging (Sclater et al., 1980). For crustal ages between about l0 and 80Myr
the heat flow is inversely proportional to the square root of the crustal age, in agreement
with the half-space cooling model.

Significant departures occur on young crust, presumably because of additional heat loss
by hydrothermal circulation systems (Lister, 1980). There is also a significant departure
from the predictions of the cooling half-space model for old ocean crust. Densely spaced
heat flow measurements in the Pacific by von Herzen et al. (1989) have suggested that the
average heat flow on older ocean crust may also be higher than the heat flow predicted by
the cooling half-space model, and this is substantiated in the data compiled bv stein and
Stein (1992) (see also Srein and Stein, 1996).

4.2.1 Half-space Cooling Model

We first demonstrate that the temperature distribution in the oceanic lithosphere as deter-
mined using the cooling half-space model described in the previous section provides an
adequate first-order model for ages less than about 80Myr. The geometry is illustrated
in Figure 4.7. Because of its low temperature, the lithosphere behaves as a rigid mov-
ing plate. The temperature in the plate is govemed by the convection-conduction equation
(see Chapter 6)

aT / a2T a2z \
'o*:"\a-t*eF) (4.2.r)

where z6 is the velocity of seafloor spreading. The Pecl6t number for the oceanic lithosphere
is defined by Pe, = usLf rc, where I is a typical distance from the ocean ridge. With
r.ro : 50 mmyr-l, t - 1,000 km, andr : I mm2 s-l as typical values, we find pe - 1.600.
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(4.2.2)

(4.2.3)

Sea Surface

Sea Floor

y T=T1

Figure 4.7. A sketch showing the model of oceanic lithosphere formation by seafloor spreading from a mid-

ocean ridge used to derive the thermal boundary layer cooling curves. solid contouß ale isotherms: dashed

contours are streamlines. The depth to the subsiding seafloor ur and the thickness of the lithosphere Y1 are

shown.

For a large Pecldt number it is appropriate to make the boundary layer approximation and

neglect horizontal heat conduction compared with vertical heat conduction, and (4.2.1)

becomes

AT A2T
uo ax:K ayz

Since r : x f uo we can rewrite (4.2.2) as

^') -dt d-l
- -'' 

n')dt dy'

which is identical to (4.1.1). The required initial and boundary conditions arc T : T\ at

t:0,7:Toat!:0,andT->T1as)--+oo.Thus,thesolutiongivenin(4'1'20)is
valid and the temperature distribution in the oceanic lithosphere is

ffi:",'"(;ftr) (4) 4\

Isotherms as a function of depth and age are given in Figure 4.8 for Z1 - Zo : 1'300 K and
,11K: tmm-S -.

From (4.1.23), the surface heat flow q9 as a function of age t is given by

k (:Tt - Tü /.4 1 <\.1v 
@ K t )t 

/2 (4.2.L t

For ft : 3.3 Wm-l K-l and other values as above, the surface heat flow is related to the

age of the seafloor t by

431
no: Ji

r \f

(.2.6)
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Figure 4.8. Isotherms as a function of depth and age in the oceanic lithosphere from (,1.2.4) taking Zr _
Zo : 1,300 K and r - 1 mmZ s l. The isothenns are values of Z - Io in K.

qo, mW m-2

t, Mvr

Figure 4.9. Heat flow as a function of the age of the ocean floor The data points are from secliment-coveretl
regions of the Atlantic and Pacific Oceans (Lister et a1., 1990). Comparisons arc made with the half-space
cooling model (HSCM) from (4.2.6) and the plate model from (4.2.29) with 1,10 : 95 km (pM95) ancl with
yro : 125 km (PMl25).

with r in Myr and q in mwm-2. This result is compared with measurements of heat flow
compiled by Lister et al. (1990) in Figure 4.9. Many measurements of the heat flow rhrough
the ocean floor have been canied out and, in general, they have a great deal of scatter (Stein
and Stein, 1992, 1996). A major cause of this scatter is hydrothermal circulation through
the oceanic crust. The heat loss associated with these circulations causes observed heat
flows to be systematically low. Because of this problem, Lister et al. (1990) consiclered only
measured values in thick sedimentary cover that would inhibit hydrothermal circulations.
The heat flow predicted by the half-space cooling model is in reasonable agreement with the
data, but it is somewhat less than the measurcd values.
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Withr:l0Myrwehaveyl-4lkmandwith1*100Myrwehaveyl-130km.It
should be emphasized that the thickness given in (4.2.7) ts arbitrary in that it conesponds to

gt-r)lQt-7i,;:0.9.
The temperature distribution in the oceanic iithosphele can also be used to predict the

morphology of oceanic ridges. As the oceanic lithosphere thickens, its temperature decreases

and its density increases due to thermal contraction. The heavier lithosphere sags downward'

thus deepening the oceans with increasing distance from the ridge. The depth of the ocean

as a funciion of crustal age can be found by the application of the principle of isostasy, based

on an assumed hydrostatic equilibrium. The principle ofisostasy states that thele is the same

mass per unit area between ihe surface and some depth of compensation for any vertical

column of material. This is equivalent to the assumption that the lithostatic plessure at some

depth is horizontally homogeneous.

The mass per unit area in a column of any age is

[" pdy+-p*
JO

where y. is the thickness of the lithosphere, p, is the density of water, and ru is the depth

of the ocean floor below the ridge crest' At the ridge crest' p - p1 the deep mantle density'

and the mass of a column of vertical height 1, -+ )r. is pr(u + y). Hydrostatic equilibrium

reouires that

4.2 Thermal Regime of the Oceanic Lithosphere

The thickness of the oceanic lithosphere from (4.i.22) is

y7 :2.32 (rt)1/2

For our nominal value of r : 1 mm2 s- 1 , the thickness of the lithosphere in km is related

to the seafloor age in MYr bY

YL - 13',fr (4.2.8)

(4.2.9)

p-pr:pp(Tr-T) (4.2.10)

Upon substitution of the temperature profile from ( 4.2.4) into (4 2.10) and further substitution

of the result inro (4.2.9), we obtain

The lirst term in (4.2.9) represents a negative mass because water with density p, is less

dense than the mantle rock it has replaced because ofthe subsidence ofthe seafloor a distance

ur. The second term in the equation represents a positive mass because thermal contraction

in the cooling lithosphere causes the density p to be higher than the reference hot mantle

rock density p1. Introduction of the volume coefficient of thermal expansion a allows us to

wflte
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(4.2.1)

(4.2.r1)u (pt - p.) : pru(n - ?o) 
fr* "o"lr]-f o,

fyL
ulp,-ptt+ I \P-Pt\dY:0

JO

kto fo* 
efic(üctn

Sincep-+plandT_>Zlatthebaseofthelithosphere,thelimitontheintegralhasbeen
changed from y - yLtoy: oo. we can rewrite (4 2' 11) using (4' 1 3) with theresult

2pp (Tr - To)

@r - p.)
(4.2.r2)
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The definite intesral has the value

erfc(4) dry (4.2.13)

so that

2pß (71 - Ts) (4 ) 14\
\.Pr - Pw)

Equation (4.2.14) predicts that the depth of the ocean increases with the square root of
the age of the ocean floor. For p1 - 3,300kgm-3, p, : 1.000kg m-3. r : 1 mm2 s-1,
T1 -Tg - 1,300K,anda:3x 10-5K I, the ocean subsidence ru in km is related to the
seafloor age in Myr by

,r 
- 

rl <\^/f (4.2.ls)

With t = 10Myr we have ru : l.lkm and with r : 100Myr we have u, : 3.5km.
This result with a ridge depth of 2.5km is compared with seafloor depths in the oceans in
Figure 4.10. For this comparison we have chosen the depths given by Johnson and Carlson
(1992) obtained from DSDP (Deep Sea Driliing Program) and ODP (Ocean Drilling pro-
gram) drill sites. Corrections have been made for sediment thickness, and "normal" crust in
the Atlantic, Pacific, and Indian Oceans is considered. Other comprehensive compilations
of ocean depth data have been given by Renkin and Sclater (1988) and by Kido and Seno
(1994) with similar results.

For seafloor ages of less than about 80Myr the data correlate well with the half-space
cooling model result given rn (4.2.15). At ages greater than about 80Myr the seafloor is

I
/:I

JO

(3)"'

Depth,
km

o Allantic
o Pacific
a lndian

- 
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-.--- PM 95
---PM 125

8o%-\

"\:-""""--.--.ii4 a
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150100
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Figure 4.10. Seafloor depth as a function of age in the Atlantic, Pacific, and Indian Oceans. Data are from
DSDP and ODP drill sites on normal ocean crust and depths have been conected for sediment cover (Johnson
and carlson, 1992). comparisons are made with the half-space cooling model (HSCM) from (4.2.15) and the
plate model from (4.2.32) with y76: 95 km (PM95) and with ;y;6 : 125 km (PMl25).
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systematically shallower than the half-space cooling model prediction. The topography data

m nigure +. tö nave much less scatter than the heat flow data in Figure 4.9, perhaps because

the to-pography is an integral measure ofthe entire thermal structufe ofthe lithosphere rather

than the near-surface thermal gradient contaminated by hydrothermal effects.

We next consider a third independent measure of the themal Structure of the oceanic

lithosphere. The Earth's gravitational field is a measure of the density distribution within the

Earth. As discussed above in connection with seafloor subsidence, it is appropriate to assume

isostatic equilibrium for.the oceanic lithosphere. Haxby and Turcotte (1978) showed that

the surface gravitational potential anomaly au due to a shallow, long-wavelength isostatic

density distribution is propoftional to the dipole moment of the density distribution beneath

the ooint of measurement:
Jt

v Lp(v) dv

tr{/ - -gAN

2t Gppr (Tt - To) {t*
t

2pp (Tt - To)

T \p\ - pw)

tu:zrc 
lo

(4.2.16)

(4.2-r1)

(4.2.r8)

(4.2.19)

(4.2.2o)

\4.2.21)

where G is the gravitational constant, ft is the depth of compensation, and Äp(y) is the

difference between the density p(y) and a reference density'

The gravitational potential anomaly can be related directly to the geoid anomaly aN by

The geoid anomaly is the vertical distance between the actual equipotential surface of the

Earth and the reference spheroid. Substitution of (4'2'1'1) into (4 2'16) gives

o* : -'+ fo' tto ot at

with the mantle density beneath the oceanic ridge taken as the reference density (ap :
p - pt),the geoid anomaly associated with the subsiding' thermally compensated oceamc

lithosphere can be written as

o* : -';o 
flo,, rr- - ,,t

at+fo*t(p_ pndyj

The first term on the right side of (4.2.19) can be integrated directly and the second term can

be rewritten using (4.2.10) relating density to temperature' The result is

^.:+{ (pt - pr) u2 _T dyl+ op, Io y rr,

By using (4.2.14) for the ocean floor depth w and (4.2.4) for the temperature distribution

in the lithosphere, we can obtain the following simple formula for the geoid anomaly over

a spreading ridge:

t,
I

This geoid anomaly is a linear function of the age of 
-the 

seafloor' For p1 - 3 
'300 

kg m- j '
.: i-*'r-1, Tr -7b: 1,300K' andcv:3 x 10-5 K-r' we find that the geoid anomaly

AN in m is related to the age I in Myr by

AN : -0.18/ (4.2.22)

Witht:lOMyrthegeoidanomalyisAN--l.8mandwith':l0OMyrthegeoid
anomaly ;, 6ry : - 18 m.
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Figure 4.11. Geoid anomalies relative to ridge crests are given as a function of seafloor age for the North
Atlantic, South Atlantic, SE Pacific, and SE Indian Oceans (Sandwell and Schubert, 1980). Comparisons are

made with the half-space cooling model (HSCM) from (4.2.22) and the plate cooling model from (4.2.35) with
yro : 95 km (PM95) and with yro : 125 km (PM125).

Over the oceans the sea surface represents an equipotential sudace to a first approximation.
Deviations are due to tides, ocean currents, and storms. Laser altimeter mgasurements of
the sea surface from satellites define the geoid over the oceans and provide maps of geoid
anomalies. Geoid anomalies as a function of seafloor age for several oceans are given
in Figure 4.11 (Sandwell and Schubeft, 1980). Also included in the figure is the linear
prediction from (4.2.22). Reasonably good agreement is found between theory and the data
for the Southeast Indian and Nofih Atlantlc Oceans, but there is considerably more scatter
than with the topography data. This scatter can be attributed to the geoid anomaLies caused

by deeper density anomalies in the mantle. This problem has also been considered in detail
by Richardson et al. (1995).

The oceanic lithosphere on the two sides of a fracture zone idealiy has a constant age

difference tz - tr. Associated with this age difference is an offset in the geoid. If the half-
space cooling modei is valid, then the offset in the geoid ÄN2 - ÄN1 is related to the age

difference across the fracture zone t2 - tl by (4.2.22) with the result

AN2 - ANl : -0.18mMyr-r (4.2.23)
12-tl

The ratio of geoid offset to the age difference across a fracture zone is predicted to be a

constant (Detrick, 1981; Sandwell and Schubert, 1982; Cazenave et al., 1983; Cazenave,

1984; Driscoll and Parsons, 1988; Marty et a1., 1988; Freedman and Parsons, 1990). Ratros
of geoid offset to age difference, (ANz - LNr) lGz - tl), for the Mendocino fracture
zone are given in Figure 4.12 as a function of the mean age of the crust at the fracture
zone,7 : (tr + t)12. The data are from Sandwell and Schubefi (1982) and from Marly
et al. (1988). Although there is considerable scatter, the magnitude of the geoid offset-age
difference ratio appears to systematically decrease from the value predicted by (4.2.23) at

older ages.

Observations of surface heat flow, bathymetry, and geoid are all in quite good agreement
with the half-space cooling model for ages less than about 80Myr. The bathymetry data
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Figure 4.12. Magnitude of the ratio of the geoid offset ÄN2 - AN1 to the age difference /2 - tl acloss the

Mendocino fracture zone as a function of the mean age of the seafloor t : (tl +t)12,^fhe squares ale the data

of Sandwell and Schubert (1982) and the circles are the data of Marty et al. (1988). Comparisons are made

with the half-space cooling model (HSCM) fiom (4.2.23) and with the plate cooling model from (4.2.36) with

yro : 95 km (PM95) and with 116 : 125 km (PM125).

show the least scatter and show a clear flattening of the bathymetry versus age curves at

greater ages.

Question 4.1: Why are there deviations from the half-space cooling model for
the oceanic lithosphere at seafroor ages greater thdn about B0Myr?

4.2.2 Plate Cooling Model

As discussed above, observational evidence indicates that the oceanic lithosphere does not

continue to thicken with age at ages greater than 60-100Myr as predicted by the half-space

cooling nodel. The physical explanation is that basal heating of the oceanic lithosphere

occurs either due to the impingement of plumes or due to secondary convection. A model

for this process is provided by the cooling of a finite thickness plate (McKenzie, 1967).

The constant thickness ofthe plate is prescribed to be y16, the thickness ofthe lithosphere

atlargetimes.AtthesurfaceoftheplatethetemperatureisthewatertemperatureZ0(T:70
at ), : 0); at the base of the plate the temperature is the mantle temperature T1 (T : T1 at

) : )r0). Initially attherid ge, x : t : 0, the temperature is the mantie temperature (Z : 11

at / : 0). We require the solution of the heat conduction equation (4.2.3) that satisfies these

boundary conditions. Carslaw and Jaeger (1984, p. 100) have given the appropriate solution

in the form of an infinite series

T^ooro)la+1t
I rro ft 

-r_l

T : To.r (Tt :*,(-#)''"(*)] (4) 14\


