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SUMMARY

We have carried out a comparison study for a set of benchmark problems which are relevant
for convection in the Earth’s mantle. The cases comprise steady isoviscous convection,
variable viscosity convection and time-dependent convection with internal heating. We
compare Nusselt numbers, velocity, temperature, heat-flow, topography and geoid data.
Among the applied codes are finite-difference, finite-element and spectral methods. In a
synthesis we give best estimates of the ‘true’ solutions and ranges of uncertainty. We
recommend these data for the validation of convection codes in the future.

Key words: mantle convection, numerical analysis, comparison of methods

1 INTRODUCTION

A major tool for understanding convection in the Earth’s
mantle is numerical analysis, simulation or computer
experimentation. A large number of different numerical
codes are used; however, relatively little is known about the
advantages or disadvantages of the various methods.
Another problem arises when a new code is set up and must
be validated. Usually a published solution to some special
problem is taken for a comparison. The accuracy of this
solution is seldom known. Often numerical values are not
available for a comparison and contour plots must be used,
which have their own uncertainties. To overcome these
problems benchmarks are common practice in other, more
established, branches of computational physics. For one or a
few well-defined problem(s), solutions are calculated with
various codes, if possible using high resolution (i.e. large
numerical grids) and considering the convergence behaviour

Authors are listed in alphabetical order. Reprint requests should be
directed to U. Christensen.

with increasing degree of resolution. For example, a
benchmark comparison has been organized by de Vahl-
Davies & Jones (1983) for a standard convection problem at
a Prandtl number of 0.71 (air). These published benchmarks
are of limited interest for mantle convection codes, because
of some major differences between standard problems in
‘ordinary’ fluid dynamics and solid state convection in
planets. Some of the reasons are that in the latter case the
Prandtl number is virtually infinite, whereas the variability
of viscosity, rarely considered in fluid dynamics, is of greater
interest. Another point relates to what aspects of the
solution are studied. For mantle convection, the deflection
of the free surface and the gravity signal are important
quantities, since they are among the few observables which
relate to the deep structure of convection. Their calculation
requires higher derivatives of the dependent variable of the
solution and are therefore especially sensitive to numerical
errors.

The present benchmark study has been proposed in
connection with a workshop on the numerical simulation of
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mantle convection, which took place in
Neustadt/Weinstrasse (FRG) in 1987 June. Preliminary
results were compared at the workshop and some extensions
of the initial benchmark were decided upon. For example,
only the Nusselt number and rms velocity were originally
requested. There was a consensus that other, more
localized, values of the solution should be included in the
comparison. Now there are three groups of problems with a
total of six cases in this benchmark. As the most basic
problem, steady isoviscous convection in a square box
heated from below is considered for various Rayleigh
numbers. In the second group are two variable viscosity
cases. As time-dependent aspects of convection have found
a growing interest in recent years, the last case is one with
intrinsically time-dependent behaviour.

After the original deadline for contributors had been
extended, 10 individuals or groups finally joined into the
venture, although few contributed to all cases, Still, we have
a reasonably good coverage of most cases with different
methods. A committee (U. Christensen, U. Hansen and H.
Harder) has collected all contributions, summarized them
and drafted a first version of this report. It was decided at
the workshop that no rating of the codes should be stated in
the report, but that we just let the results speak for
themselves. We would even like to caution the reader who
wants to do a rating for himself or herself. Many aspects
have to be considered for such a rating. The most obvious
one is that every convergent method would have given a
better result if higher resolution had been used; therefore it
is of no use to compare different methods when the degree
of resolution also differs. Also, considering the level of
accuracy for a given number of finite different points, finite
elements or spectral modes, may not be the best standard of
comparison, and comparing results obtained within a given
CPU time on a standard computer would be better. Of
course, this is not strictly possible (although CPU times are
quoted in this report), because different machines have been
used. A further aspect is that a code which does well in
some aspects (e.g. gives a ‘good’ Nusselt number) may
perform poorly in others (e.g. local temperatures). Further
criteria may be important, for example the versatility of a
code or the ease for implementing any alterations, but these
are impossible to quantify.

In Section 2 we give the definition of the benchmark
problems. In Section 3, the partaking numerical codes are
briefly described. Section 4, consisting mainly of tables,
contains all contributed results. In Section 5, we make an
attempt to synthesize the results into best estimates for the
exact solutions and the remaining level of uncertainty.

2 THE DEFINITION OF THE BENCHMARK
CASES

2.1 General

We consider 2-D thermal convection of a non-rotating
Boussinesq fluid of infinite Prandtl number in rectangular
closed cells. Except for the viscosity in cases 2(a) and (b) all
material properties are constant. Some definitions and
notations are given in Table 1 along with dimensional
reference values. However, except for topography and geoid

Table 1 Symbols and dimensional reference values
Symbol Explanation dimensional value
(ST units)

X horizontal coordinate, zero at left margin

[ length of cell

z vertical coordinate, positive upwards, zero

at bottom

h height of cell 106

u, w horizontal, vertical velocity

T temperature

AT temperature contrast (cases 1 and 2) 1000

p density (Boussinesq-value) 4 x 103

K thermal diffusion constant 10-6

g gravity acceleration 10

o thermal expansion coefficien: 2.5x10-5

v kinematic viscosity 2.5% 1019 (1a)

2.5x1018 (1b)
2.5x1017 (1c)

Vo kinematic viscosity at surfiace 2.5x1019(2a,b)
Cp heat capacity 1.25x103

Q volumetric rate of internal heating (case 3) 5x10-9

G gravitational constant 6.673x10-1!
t time

& surface/bottom topography

[} geoid anomaly

q temperature gradient

non-dimensionalized data were requested. To remove the
non-uniqueness all data are presented for the upwelling flow
occurring at the left margin of the cell, i.e. at x =0. The
participants were encouraged to provide solutions obtained
on different grids and to attempt to extrapolate their results.
Apart from providing the data defined below, each
participant was asked to give a brief description of the code,
and give information about the machine used and the CPU
time for the various cases.

2.2 Data to be calculated

The following five data or sets of data were to be calculated
in cases 1(a)—(c) and 2(a) and (b). In case 3 only (i) and (ii)
are requested.

(i) The Nusselt number

!
f 3,T(x,z=h)dx
o

Nu=-h—7;
fT(x,z=0)dx
o

(i.e. mean surface temperature gradient over mean bottom
temperature).

Only in the time dependent case 3 is the use of this
definition compulsory, in the other cases equivalent
definitions of the Nusselt number could be used.



(ii) The (non-dimensional) rms velocity

h 1 ! rh 1/2
Ums=—{—ff(u2+w2)dzdx} ¥
i x LAl 0 Jo

(iii) Non-dimensional
corners of the cell:

_‘_”<ﬂ>
1= AT \5:2/)"

with

temperature gradients at the

g1atx=0,z=h; qyatx=1z=h;
gratx=1L2=0; g,atx=0, 2=0:

(iv) The depths (z.) and values (7,) of extrema of the
temperature on the center-line (x=1//2,z). Only the
extrema next to the upper and lower boundary are
recorded. Scale the depth by 4 and temperature by AT.

(v) Topography of the free surface and bottom boundary
and the geoid anomaly at the surface. These values are to be
calculated at the cell margin x =0 and x =/ in physical units
(m) using the dimensional values in Table 1. Topography
and geoid anomaly are normalized by setting the mean to
zero. The position of the zero crossing (scaled by the height
h) is also requested. Assume that there is no overlying
medium (e.g. no water layer), and that the inviscid
substratum has a density twice that of the convecting
material (i.e. the density change is the same as for the upper
surface).

&, surface topography at x =0;
&, surface topography at x =/;
&5 bottom topography at x = 0;
&, bottom topography at x =/;
@, geoid anomaly at x =0, z = h;
@, geoid anomaly at x =/, z = h.

(vi) Additionally in case 3 the period of oscillations (if
any were found) was requested, where time is scaled by
h?/k.

2.3 Description of the benchmark cases

Case 1

Steady convection with constant viscosity in a square box
({//h =1). Temperature is fixed to zero on top and to AT at
the bottom, no internal heat sources. Reflecting symmetry
at the sidewalls (i.e. 8,7 =0), zero shear stress on all
boundaries. The Rayleigh number is Ra = agATh>/xv

Case 1(a): Ra=10*

Case 1(b): Ra=10°

Case 1(c): Ra=10°.

Case 2
Steady convection with temperature- and depth-dependent
viscosity according to the equation

bT wc(l —z)
V=VOCXP[_E+_/1—- s

All boundary conditions as in case 1. The Rayleigh number

1S
agATh?
Ra, = :
KV,
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Case 2(a): Aspect ratio [/h=1

Ra,= 10"

b =1n (1000) = 6.907755279

c=0.

Case 2(b): Aspect ratio //h =2.5
Ra,= 10"

b = In (16384) = 9.704060528
¢ =In (64) = 4.158883083.

Case 3

Time-dependent convection with constant viscosity and
internal heating. The aspect ratio //h =1.5, the tangential
velocity at the top and bottom boundary is zero (no slip
condition). The top boundary is isothermal with 7 =0, the
temperature gradient 87/3z at the bottom is zero. At the
side walls there is reflective symmetry. The cell is
homogeneously heated from within, and the ‘Rayleigh
number is

Ra = agQh®/x*pc,v = 216 000.

The initial condition is not prescribed; however, it should
be chosen in order to obtain a single convection cell in the
box. The evolution must be traced to that point where any
transient behaviour has died away and (if possible) a strictly
periodic regime is reached. Previous work (Lennie et al.
1988) has indicated that this system shows oscillatory time
dependence due to instabilities in the upper boundary layer
(growing blobs which are finally swept into the downwelling
plume), and that it undergoes a sequence of period-doubling
bifurcations between Ra = 190 000 and 220 000. This means
that at lower Rayleigh numbers every blob behaves exactly
in the same way (this is labelled a P1 cycle), at somewhat
higher Rayleigh numbers only every second blob (P2 cycle),
then every fourth blob (P4 cycle), etc. In time-series plots of
Nu or v, the character of the cycle becomes obvious by
comparing, for example, the maxima. At first they repeat
identically, then pairs are identical, then quartetts and so
on. In this case the following information was requested: the
character of cycle, the period of a cycle and the maxima and
minima of Nu and v,,,,. From previous work it appeared
likely that the transition point between the P2 and P4 cycle
lies close to Ra =216 000, therefore those who obtained a
P2 cycle at this Rayleigh number were also asked to study
the case with Ra =218 000 (case 3').

3 CODE DESCRIPTION

In our comparison study we have six finite-difference (FD)
methods, three finite-element (FE) programs and one
spectral approach. A brief description of each method is
given in Table 2, with a reference for further reading for
most codes. The majority of FD methods uses equidistant
mesh spacing (except Cs and Ha), whereas the FE method
naturally makes use of grid refinement in boundary layers.
Because of the various ways of structuring non-equidistant
grids we do not give more detailed information in this report
other than numbers of points or elements. We think that for
most of the requested data we have a sufficient diversity of
methods included.
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Table 2
Acronym  Author Computer Description of Method Reference for Code
Bl B. Blankenbach Cyber 205 FE(NACHOS); 8-point-serendipity element, uwp, uw:quadratic, p:linear,
T:quadratic, direct solver, time-dep: modified Crank-Nicholson, grid:ne Gartling (1977)
Ko M. Koch Cyber 205 - same code as above, run independently, different grid structure - i
Ch U. Christensen CRAY XMP FE; y:bicubic splines, T: biquadratic splines, upwind, direct solvers
stat.: underrelaxation, time-dep: predictor-corrector, grid:ne Christensen (1984)
Csl L. Cserepes IBM 3031 FD; W : direct solver/SOR in case 2; T: upwind diff., ADI; grid:ne Cserepes (1985)
Cs2 e * - same code as above, except with central diff.
Ha H. Harder CRAY XMP FD; w :direct solver; T:central diff., ADI; stat: underrelaxtion -
time-dep: predictor-correct.; grid:ne
HG U. Hansen 2 FE non-conforming element; \ :quadratic; T: linear, upwind; direct solvers, Hansen & Ebel (1984)
D. Gunkel stat: underrelax., time-dep.: predict-correct., grid: ne
Ja G. Jarvis IBM 4381 FD; y—w implicit; T: explicit; grid: equi
Mo D. Moore VAX 880(5 FD; y-o direct solv.; T:explicit (second order) DuFort-Frankel; Moore, Peckover
grid: equi, staggered & Weiss (1974)
ol P. Olson Microvax FD; w-o or y, SOR; T: explicit (first order), Arakawa-Jacobian; -
grid: equi
SB T. Schnaubelt Microvax Spectral (Fourier), Galerkin, Newton-Raphson iter. (stat. only) Busse (1967)
F. Busse

SM H. Schmeling
G. Marquardt

Comparex 8/35

Cyber 205 grid: equi

FD; y ; ADI; T: upwind (Spalding), ADI; stat.: relaxation,

Schmeling & Jacoby (1981)

FE: finite element, FD: finite difference, ADI: alternating direction implicit meth., ¥ : stream-function (biharmonic eqn.)
w- : streamfunction vorticity approach, uwp= primitive variables, equi/ne = equidistant/nonequidist. mesh

stat: method to calculate stationary solutions

A few additional remarks will be given. All codes
contributing to case 3 used some form of the Courant-
Lewis—Friedrichs (CLF) criterion to control the time step.
In some codes At was changed perpetually (HG, Ha),
occasionally (Ch) or was fixed to a sufficiently low value to
meet the CLF-criterion (Ko, Mo, SM). In cases 1 and 2
several workers (HG, Ch, Ko, Ha, Mo) preferred an
average of advected and conducted heat flux through the
whole cell to determine the Nusselt number, rather than the
definition in Section 2. To determine temperature gradients,
most FD methods used quadratic interpolation on three
points (Mo tried various schemes). Temperature extrema
were determined by a local quadratic fit of finite difference
values, or by fitting all temperature values on the
depth-profile by a cubic spline first, which Mo reported to
give better results. All those contributing topography data
calculated the vertical normal stress at the boundaries. This
includes the determination of the dynamical pressure, which
is only a variable of the solution in Ko. In the other
approaches pressure was determined by integration of the
Navier—Stokes equation, which involves calculation of third
derivatives of the stream function (except in Ja, where
vorticity is part of the solution). The integration path was
along the surface in the code used by Ja, whereas Ch and
Ha integrated first horizontally at some depth level and then
vertically to the top or bottom boundary. SM reported
results for both methods. The geoid was mostly
(Ch, Ha, SM) calculated by a spectral method similar to
Davis (1986). Ko used the method given by McKenzie,
Roberts & Weiss (1974) to calculate the geoid at a height
z=1.05h, followed by downward continuation to the
requested reference height z =h. For comparison, Ko also

reported results obtained by the spectral technique. These
data were tabulated under the entry Ko'. Additionally, Ch
determined topography and geoid in constant viscosity cases
by a Green’s function integration of the temperature field
(Parsons & Daly 1983), these solutions are labelled Ch’ in
Tables 3(b), 4(b) and 5(b). Many authors attempted an
extrapolation of results obtained with various degrees of
resolution, as requested, although by different methods.
Some (Ja,SM) used graphical methods or estimated an
extrapolated value. Ha, HG, Mo used the Romberg scheme
assuming a convergence order of two (plus higher even
terms in the series expansion of the discretization error),
and Cs took a related approach. Ch used Aitken
extrapolation, which determines the exponent of the error
term from the three results with highest resolution.

The participants had been asked if they would make their
codes available upon request. There are affirmative answers
from all participants, but almost all mentioned that there is
poor documentation or none at all.

4 RESULTS

All contributed results are listed in Tables 3-5 for the
constant viscosity case, Tables 6 and 7 for the variable
viscosity problems and in Table 8 for the time-dependent
case. Authors are listed in alphabetical order, except that
Ko follows directly after Bl, because the code is identical
and only the grids are different. Because of the symmetry of
the solution in cases 1(a)—(c) we list only the non-redundant
values, the others are recovered by the relations g;=¢q,,

Ga=qu Fo=l=1,2.51=2, E3=§;, §,=65>.
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30 B. Blankenbach et al.

Table 6a: Nusselt Number and other quantities for temperature-dependent rheology (case 2a)

Code Grid Nu Urmms Q 92 g3 g4 T. ze T. Ze

Bl -18x18 '9.576 478.036  20.103 i 31.215 0.597 0.756 0.063 0.854 0.818
24x24  9.630 483.030 17.332 1.156 25.854 0.510 0.753 0.063 0.846 0.818

Ko 16x16 - 9.496 476.95 —= = — — — — — B
20x20  9.667 478.63 — = — — — — — o
28x28  9.849 179.78 — = — —— — — — ===

Ch 18x18 10.06681 480.7714 17.53909 1.015290 26.79242 0.497214 0.742056 0.067577 0.830956 0.842760
24x24  10.06738 480.3088 17.52025 1.008742 26.82805 0.497331 0.739915 0.062210 0.831646 0.832593
36x36 10.065863 480.38728 17.52924 1.008509 26.81372 0.49735G6 0.740435 0.063225 0.832293 0.829998
48x48  10.065907 480.41558 17.53059 1.008513 26.81125 0.497373 0.740599 0.062712 0.832381 0.826806
79x72  10.065949 480.42971 17.53116 1.008511 26.80979 0.497379 0.740475 0.062492 0.832376 0.824409
ext. 10.065995 480.43342 17.53136 1.008509 26.80846 0.497380 0.740450 0.062424 0.832350 0.823

Csl 23x23  10.61 524.2 === — — — — — — =
33x33  10.38 503.3 19.25 1577 27.68 1.96 0.7161 " 0.0797 0.7955 0.8132
ext. 9.90 468.3 = — — s — — — —

Cs2.. 23x23 . 10.35 146.1 — — — == = — == —
33x33.  10:19 458.3 19.31 0:92 25.41 0.42 0.7239  0.0676 0.8200- " 0.8232
ext. 10.04 469.8 . == =5 — = — = ==

Ha 24x24 9.93096 478.232 17.8744 1.01904 25.5240 0.487645 0.72873 0.063329 0.82746 0.83359
48x48 10.0379 480.620 17.6282 1.01095 26.5374 0.494881 0.73757 0.062550 0.83084 0.82548
79x72  10.0543 480.622 17.5759 1.00956  26.6941  0.496243 0.73922 0.062426 0.83161 0.82481
ext. 10.0667 480.524 17.5325 1.00847 26.8124 0.49733 0.74053 0.062331 0.83222 0.82428

HG 24x24 10.0686 482.53 17.2714 0.98884  20.24074 0.30503 0.74189 0.061770 0.840762 0.82137
36x36  10.0678 479.56 17.549 1.0032 25.67385 0.46006 — = == —
ext. 10.0671  477.18 17.7711  1.0147 30.0203 0.58408 — — = =

SM 31x3I - 9.07 453.0 13.62 1.20 13.98 0.33 0.6563  0.0708 0.8472 0.7966
41x41 9.63 454.5 14.76 112 17.48 0.40 0.6800  0.0625 0.8393 0.8083
51lx51 = 9.88 464.2 15.55 1.10 20.7 0.45 0.7024  0.0635 0.8403 0.8133
61x61 - :9.93 473.9 — — - — — — — —
ext. 10.5 482. = — — — — — — —

Table 6b: Topography and geoid for temperature-dependent rheology (case 2a)
Code Grid El f-g 1'(5 = 0) 63 64 l(E = ()) ‘}‘1 (1’2 1(‘1’ = 0)
Ch 18x18 1017.74 -1090.67 0.676680 388.27 -788.45  0.632959 17.808  -54.971 0.657272
24x24 1015.084 -4094.314 0.677194 387.435 -788.770 0.631710 17.6252 -54.8676 0.658486
36x36 1012.871 -4096.258 0.677133 386.879 -788.208 0.631285 17.4673 -54.7169 0.659316
48x48 1011.974 -4097.046 0.677068 386.660 -788.144 0.631102 17.4122 -54.6643 0.659592
72x72 1011.326 -4097.627 0.677025 386.499 -788.112 0.630958 17.3775 -54.6278 0.659784
ext. 1010.925 -4098.073 0.677001 386.373 -788.086 0.630810 17.3430 -54.5984 0.659931
Ha 24x24 1016.75 -3850.45 066811 398.618 -876.950 0.63360 16.9181 -51.3051 0.65503
48x48 1012.87 -1033.43 0.67477 2389.432 -817.392 0.63210 17.2468 -53.7822 0.65873
72x72 1011.82 -4069.36 0.67602 387.742 -801.830 0.63149 17.3026 -54.2411 0.65941
ext. 1010.90 -4098.56 0.67702 386.393 -788.362 0.63093 17.3461 -54.6082 0.65995
Ko 16x167 - 1232. -3696. 0.758 416.7 -673.8 0.727 16.67 -52.06 0.670
20x20 1256, -3717. 0.761 421.2 -692.2 0.726 16.91 -52.26 0.668
28x28  1284. -3744. 0.761 426.4 -718.5 0.723 17.42 -53.28 0.667
Ko? “16x16 - — = o — = — 18.40 -53.55 0.654
2020 i 1 s —= == — 18.03 -53.35 0.654
28x28"  — — = o = = 18.07 -53.83 0.659
SM = 81x81 1 12976 =3516.2 -'0.7075 1879.4 -126.4 0.5430 17.97 -52.68 0.6585
41x41 1160.6 -3783.3  0.6977 1428.7 -448.5 0.5948 17.56 -52.29 0.6591
51x51 - 1092.9 -3895.9  0.6918 1100.2 -564.6 0.6151 17.13 -52.32 0.6580
ext. 1000: -4050. 0.675 (400) (-900) 0.67 16. -52.4 0.6585

CPU
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Table 7a: Nusselt Number and other quantities for temperature- and depth-dependent rheology (case 2b)

Code Grid Nu Vyims Q1 g g3 94 T Ze T. Ze CPU
Bl - 18x18 . - 6.795 170.223° 20,598 0.246 17.118 0.792 0.413 0.187 0.598 0.783 ?
24x24 6.836 171.568 17.496 0:215 14.979 0.668 0.415 0.187 0.599 0.779 7
Ko ' 16x16 6.749 169.59 et = = — == = = = 80.
20x20 6.822 170.61 = — = L — == = == 7
28x28 i6.876 17116 —— = —— = — = —— == ?
Ch 36x18 6.958129 ‘172.9789 — — — — — — — — 5.0
48x24 6.933153 171.89687 18.50291 0.177529 14.16516 0.617438 0.398288 0.196584 0.577376 0.77353 10.7
72x36  6.930056 171.76533 18.48383 0.177462 14.17037 0.617670 0.397281 0.193156 0.576338 0.783011 37.5
96x48  6.929978 171.76540 18.48420 0.177443 14.17015 0.617689 0.397099 0.192048 0.575940 0.786534 91.
ext. 6.929913 171.76540 18.48774 0.177426 14.17005 0.617700 0.397099 0.190809 0.575833 0.782726 —
Csl 50x25 7.409 193.1 21.85 0.45 15.09 1.96 0.4026 0.2053 0.5635 0.7650 3760
Cs2 50x25 6.806 166.7 19.93 0.17 18.59 0.22 0.3849 0.1995 0.5608 0.7647 5410
Ha 32x32 6.86187 167.718 18.7519 0.173788 14.0444 0.606305 0.38799 0.19346 0.56683 0.77418 54.
48x48 ~ 6.89925 169.951 18.6016  0.175805 14.1142 0.612699 0.39313 0.19251 0.57182  0.77965 195.
72x72 6.91611 170.950 18.5360 0.176701 14.1444 0.615494 0.39528 0.19139 0.57405 0.78195 480.
ext. 6.92970 171.753 18.4842 - 0.177417 14.1682 0.617708 0.39695 0.19049 0.57585 ~0.78373 =
HG 18x18 6.9948 e 16.7309 0.1529 13.9595 +0.5059 0.4067 0.1853 0.6032 0.7897 84.
24x24 6.9692 194,788 = 174181~ 0.1634 14.0350 0.4271 0.4032 0.1870 0.5922 0.7863 150.
ext. 6.9360 171.73 17.9678 . 0. 1717 14.0954 10.5241 — = — — —
SM 41x41 8.16 246.0 17.00 0.28 14.92 0.28 0.4860 0.150 0.7540 0.825 208
41x21 = 7.43 P42 12.26 0.36 11.84 0.26 0.4812 0.1426 07771 0:8226 160
61x31 = 7.40 212, 14.46 0.30 13.44 0.42 0.4681 0.1577 0.7038 0.8166 240
81x41  7.38 208.5 15.48 0.28 14.44 0.48 0.4704 0.160 0.6820 0.8125 700
ext. 7.35 195, 17.0 Q.27 16.6 0.60 0.47 0.165 0.650 0.805 =
Table 7b: Topography and geoid for temperature- and depth-dependent rheology (case 2b)
Code Grid El .{2 .L(f = 0) 63 £4 .L(f = (J) ‘I’l (I'Q l‘(‘]' = )
Ch 36x18 - 1553.48 -4351.20 1.637742 2306.90 . -6649.13 1.739081 -10.473 ~ -29.540 1.274083,2.297762
48x24  1553.198 -1310.227 1.636845 2314.014 -6630.167 1.732315 -11.2758 -28.6508 1.274575, 2.302927
72x36  1544.948 -4340.706 1.636218 2313.209 -6634.261 1.731361 -11.5676 -28.4401 1.2740653, 2.304748
96x48  1542.246 -4541.180 1.636016 2312.654 -6636.745 1.731248 -11.6583 -28.3738 1.274767, 2.305338
ext. 1540.200 -4341.474 1.635803 2311.821 -6639.780 1.751081 -11.7759 -28.2782  1.274881, 2.306150
Ha - 32x32  1579:63 -4311.23 1.6256 2319.70  -6453.48 1.7197 -9.8094 -31.8617 - 1.2411, 2.2822
48x48 1557.20 -4329.81 1.6378 23805105+ =6685.95 1.7258 -10.8030 -29.9932  1.2605, 2.2951
T2x72. ~1547.05 © =1336.92 1.6344 2313.19 -6601.85 1.7288 +11.3963 -29:0285. -1.2683, 2.5014
ext. 1538.81 -4342.09 1.6344 2811.80 7= =6638.78 : 1.7512 =11.9381 =28.1971  "1.2742, 2.3066
Ko' [16x16: - 21.31; -38061. 1.970 2946. -6133. 1.905 -13.01 -26.78 1,296, 2.827
20x20 2158, -3802. 1.965 2935, -6079. 1.895 -12.35 -217.59 1.285, 2.320
28x28 ~ 2184, -3739. 1.974 2920. -6088. 1887 -11.81 -28.07 1.274,2.313
Ko’ 16x16 - — s = — — — -10.41 -28.11 1312, 2:820
20x20 - — = —— — — = -11.90 -26.58 1.308, 2.323
28x28 . — — = o= = — -11.26 -26.98 1.298, 2.316
SM. Sd1x21 > 2379. -6355. 1.796 4730. -8269. 1.796 -2.47 -44.2 1.3751, 2.3617
6Ix31  ~1736. -5554. 1.7503 2675, -7940. 1.805 -4.92 -39.1 1.3600, 2.3364
81x41 1526. -5399. 1.7822 2280. -7778. 1.810 -7.40 -38.2 1.3401,-2.331
ext. 1300. -4800. 1.705 1800. -7100. 1.825 -13.0 -36. 1.30,2:32

A remark is appropriate concerning the vast differences in
tablulated CPU-time for about equal grid size. They mainly
reflect differences in computational speed, which, according
to the ‘Linpack benchmark’ (Dongara 1986) relate, for
example, like 350:7:1 for the CRAY XMP, VAX 8800 and
Microvax II. A second point is that some use an iteration
method to find a steady state, whereas others use real time
steps. The second method usually takes much longer,

however, it has the advantage to ensure the stability of the
final steady solution against time-dependent disturbances.
In the constant viscosity case the agreement is excellent
for the global properties Nu and v, even at Ra = 10°. The
individual best resolved results agree for all codes within
1-2 per cent. We show the convergence behaviour at
Ra =10° for all codes in Fig. 1, where results are plotted
versus VN~!, with N being the total number of finite
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Table 8: Nusselt Number, velocity(rms) and period in the time-dependent problem (case 3)

Nusselt Nu. velocity(rms) CPU per
Code Grid Type Period max min max min max min max min timestep
Ch 24x16 P2 0.048125 7.41120 6.48660 7.22407 6.81599 (0.4349  31.9424 57.5174 - 30.2854 0.080
36x24 P2 0.04806G6 7.38809 6.47424 7.20315 6.80255 60.3737 ~ 31.9652 57.4470 30.3057 0.210
50x32 P2 0.048052 7.38252 6.47106 7.19940 6.79887 60.3680 31.9725 57.4358 30.5128 0.702
ext. 0.048043 7.37845 6.46740 7.19712  6.79493 60.3674 31.9785 57.4309 30.3160 =
Csl 48x24 chaotic — — — — — — o 234
Ha 36x24 P4 1009326 T7.404 6.446 7223 6.778 61.21 §3.15 60.80 31.18
7.406 6.419 7169 6.746 63.71 33.28 59.37 31.24 0.015
48x32 P2 0.047388 7.3942 6.4497 7.2007 6.7764 62.432 32.651 58.957  30.768 0.028
72x48 P2 0.047744 7.38451 = 6.46086 7.19820 6.78725 612695 32.2765 58.1199-30:5122 0.067
g6x64 P2 0047867 *7.98176- 6.464569" 7.19722- - 6.79115 60.8708  32.1475 57.8245 30.4281 0:129
ext. — 0.048024 7.3787 6.4692 7.1959 6.7962 60.364 31.983 57.443 30.324 o
HG 29x21 P2 0.050 7.3 6.53 7.26 6.69 62.4 3.2 61.0 30.4 3.6
39x25 P2 0.0488 T.31 6.47 7.20 6.74 61.3 31.8 58.9 30.4 1.6
Ko 16x16 = Pl —=0:0226 6.947 6.384 — = 50.40 32.65 — s 2
24x16 P1 0.0268 6.88 6.33 — — 18.27 33.36 — — 4.
Mo 48x32  chaotic == = = = e — — — 0.0175
96x64 P4 .0961924 7.36751 6.49684 7.26605 6.83458 61.2196 31.8696 59.4829 30.2926
7.35690 6.37794 7.07543  6.72420 59.4645  32.3208 55.0453 30.4943 A
192x128 P4  .0960978 7.36708 6.48274 7.23434 6.81736 (0.9105 31.9008 58.7431 30.2672
7.36128 6.40786 7.11429 6.74776 59.8013 32.1912 55.9230 © 30.3964 32
384x256 P2  .0485805 7.348633 6.454025 7.184493 6.753839 60.35083 31.77670 57.69152 30.22963 18.0
SM 21x21 " Pl 00273 7.255 6.600 e 55.80 30.86 — = 0.056
31x31 = P2 0.0508 7iesl 6.45 7.14 6.75 60.3 31.46 55.5 29.95 0.167
dlxdl- P2 “0.0494 7.321 6.422 7:1:30 6.764 60.5 31.86 56.0 30.00 2
Table 8a: Same quantities as in table 8 for case 3’ (Ra=218000)
Nusselt Nu. velocity(rms)
Code Grid Type Period max min max min max min max min
Ch 24x16 P2 0.047800 7.4233 6.4880 7.2239 6.8356 60.580 32.146 57.483 30.412
36x24 P4 0.095510 7.4018 6.5084 72525 6.8469 60.953 32.030 58.574 30.393
7.3973 6.4504 71597 6.7930 60.100 32.259 56.401 30.492
Ha 48x32 P4 0.094205 7.4049 6.4944 T2T19 6.8308 63.215 32,667  60.732 30.846
7.4058 6.4217 Tal397 6.7524 61.986 32.962 57.401 30.985
96x64 P4 0.095126 7.3947 6.5028 7.2536 6.8388 61.518 32.195 59.153 30.512
T.5915 6.4388 7.1480 6.7768 60.541 32.449 56.620 30.624
SM 41x41 P47 0.0979 7.3286 6.5156 7.2647 6.8440 61.73 31.59 59.25 30.07
7.3403 6.3808 7.0453 6.7131 59.85 32.17 53.81 30.31

difference points, finite elements or Fourier modes. We like
to point out that N is not necessarily identical with the
degrees of freedom in the system to be solved, which can,
especially for finite element methods, be higher by a factor
of about 2—4. Not surprisingly, those codes which use mesh
refinement in the boundary layers already came closer with
a smaller number of elements or difference points. This also
holds for FD methods, where non-equidistant mesh spacing
is less common. It is remarkable that for Nu and v .
several extrapolated results (by the Romberg or Aitken
method) agree within 5 or more digits.

For the local temperature gradients and extrema the
variance among results is somewhat larger, especially for
high Rayleigh numbers. For example, for the value of g4,
the range of the reported ‘best’ values spans +20 per cent.
Partially, the reason could be that usually less attention is

paid to these quantities as compared to the Nusselt number,
and therefore less effort was spent on an accurate
determination. However, another reason is certainly also
that local values are more prone to numerical error than
global averages.

Five workers contributed geoid and topography data for
the constant viscosity cases (seven, counting Ch, Ko and
Ch’, Ko’ separately). Despite the difficulties in determining
these quantities, the agreement is satisfactory for all
Rayleigh numbers. Ch finds that the kernel method (Ch’)
gives better results on coarse grids than evaluating the
normal stress at boundaries by differentiation. The
topography values reported by Ko differ slightly from the
other solutions. This is due to a different normalization, i.e.
setting the mean dynamical pressure at the surface rather
than the mean topography to zero. The peak-to-peak
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Figure 1. (a) Nusselt numbers versus grid size for case 1(c)
(Ra = 10°). The gridsize is characterized by VN ™!, where N is the
number of finite difference points, number of elements or number
of Fourier modes. For labels see Table 2. (b) Local temperature
extremum 7, versus grid size.

amplitude (&, — &), which is unaffected by the difference in
normalization, agrees well with the other solutions.
Isotherms, stream lines, topography and geoid of the two
variable viscosity cases are displayed in Figs 2-5. The plots
are obtained from a high-resolution study; however, we do
not mean to use these contour drawings as standards, but
include them here for illustration only. Due to temperature-
dependent viscosity the upper boundary layer is spanned by
a larger temperature jump than the lower one, while the
addition of pressure dependence reverses this tendency.
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Topography on the surface boundary is larger than at the
bottom boundary with temperature dependence; here again
including the pressure dependences reverses the effect.
Particularly interesting is the geoid signature in case 2(b),
where a local minimum is found over both the upwelling and
downwelling currents.

Not unexpectedly, the scatter of results is slightly larger
than for the simpler constant viscosity cases. Still, Nusselt
number and rms velocity generally agree within some per

1.0 1
AN _
. 0 iR 1.0
(a)
10
- 0 10

(b)

Figure 2. Isotherms (a) and streamlines (b) for case 2(a). Contour
lines are equally spaced with AT =1/20 and Ay =10. Note that
contrary to the convention in the rest of this report the upwelling
flow is on the right.
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Figure 3. Bottom (a), surface topography (b) and geoid (c) for case 2(a). The upwelling flow is to the right.
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Figure 4. Streamlines (a) and isotherms (b) for case 2(b). Contour lines are equally spaced with AT =1/20 and Ay = 5.
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Figure 5. Bottom (a), surface topography (b) and geoid (c) for case
2(b). The upwelling flow is to the right.

cent for all reported ‘best’ results (Fig. 6). Cs finds that his
results are more accurate when using central differences
(Cs2) rather than upwind differencing (Csl). Topography
and geoid are more problematic in the variable viscosity
cases. The geoid data calculated by Ch, Ha and Ko agree
well, also the topography data, apart from the problem of
the different normalization used by Ko. After changing the
path of horizontal integration of the Navier—Stokes equation
to a mid-depth level (see Section 3), SM comes close to
other contributions. These data are reported in Tables 6(b)
and 7(b) under the entry SM. Integration along the outer
boundaries yielded no convergent solution at all in their
case, which is likely to be due to the strong viscosity
gradients and the use of an equispaced grid. Ch and Ha also
report (with non-equispaced grids) inferior results with this
choice of integration path.

In the time-dependent case 3, the correct solution is most
probably a P2 cycle. All contributors except Cs1 and Ko end
up with,a P2 cycle at the highest degree of resolution that
they employed (Table 8). This applies for codes which seem
to underestimate the degree of complexity in the temporal
behaviour on coarse grids (Ch, SM) as well as for those
which overestimate it (Ha, Mo). It is interesting that there
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Figure 6. (a) Nusselt number vs. gridsize for case 2(b)
(temperature- and pressure-dependent viscosity). (b) Local
temperature extrema T, versus grid size. Dots denote the extremum
near the upper and crosses near the lower boundary layer.

does not seem to be a general rule as to the kind of
behaviour with insufficient resolution, contrary to the
previous assumption that under-resolution generally leads to
more complex dynamical behaviour. Time-series plots of Nu
and v, and a phase space projection of the P2 cycle are
shown in Fig. 7. In cases where a P2 cycle was obtained, the
reported extrema of Nu and v, agree well, likewise the
period of the oscillations. Three contributions for a Rayleigh
number of 218000 (case 3') agree on a P4 cycle. Because
two of those codes show a tendency to underestimate the
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Figure 7. (a) Time-series plots of the Nusselt number; (b)
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and the rms velocity for case 3, showing the P2 structure of the limit
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degree of complexity, it is quite certain that the bifurcation
point P2-P4 lies in between the Rayleigh numbers 216 000
and 218 000.

5 BEST ESTIMATE OF SOLUTIONS

We have tried to determine a best estimate of the solutions
and the uncertainty of these values (Table 9). We
recommend the use of these data for validation of

convection codes. For each datum a few individual results
have been selected to define the ‘best value’. We wish to
emphasize that we do not imply any superiority of the
respective codes compared to others. The reason for their
selection has been that the maximum achieved resolution
was better than in other contributions, and that results were
obtained on at least three or four successively refined grids,
which often allowed a reliable extrapolation. Thus, the
choice of these contributions may reflect more the
availability of computer time rather than quality of codes.

The criteria for defining the ‘best value’ were the
following. We require a close agreement of ‘best individual
values’ (most extrapolated), from three or more sufficiently
distinct methods, if possible. Next best is when two distinct
codes yield very close values, and when there is at least one
further contribution, which does not achieve the same level
of accuracy due to lower resolution, but in principal
corroborates the correctness of the other two results. This is
a safeguard against a common systematic error in the first
two codes, for which there might be a small chance. In the
worst case, we have only two results in good agreement with
little support from other contributors. In Table 9 those
contributions which were taken to define the best estimate
are underlined, while additional supporting solutions are
not. We would like to point out that the results of Ch and
Ha, although coming from the same institute, were obtained
independently with entirely different codes.

Additional information not presented in this report has
been used to determine the most likely value out of the two,
three or four individual data taken to define the best
estimate. Mainly, these are the data from the Romberg
extrapolation tableau (Ha,Mo) or the plausibility of the
exponent obtained by the Aitken extrapolation scheme
(Ch). Ch had also provided additional information from
solutions obtained on differently structured grids with the
same number of elements.

The quoted uncertainties of the best values are conservative;
the true solution may often be much closer than the error
values suggest. Our criterion for fixing the uncertainty level
was that all the two to four data defining our best value had
to lie within this range. Of course, occasionally the
agreement between them may be fortuitous, especially if
there are only two values available. Therefore, we estimated
the quality of the extrapolations with the data mentioned
above, also considering the ‘distance’ over which the
extrapolation was carried out and determined the
uncertainty range accordingly. In most cases one ‘real’ (not
extrapolated) result lies inside the error range. If there were
only two data available a larger allowance has been made
than in the cases where we had three or more.

6 CONCLUSION

Our benchmark comparison shows a satisfactory agreement
among all partaking numerical codes concerning most of the
requested quantities. The tabulated material is helpful to
indicate the necessary resolution to obtain the desired
accuracy for different types of codes. Increased resolution in
the boundary layers of high Rayleigh number convection
gives better results than equidistant mesh spacing, when the
same number of grid points (elements) is used. Global
averages (Nu, v,,;) are usually more accurately determined
than local values. High-resolution studies, together with an
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Table 9 Best estimates and uncertainty of solutions
Quantity Value Uncertainty Codes
Case la
Nu 4.884409 0.000010 Ch. Mo, SB Ha, HG
Vrims 42.864947 0.000020 h, Ha, M B
q] 8.059384 0.000003 h, Ha. M B
q2 0.588810 0.000003 Ch, Mo, SB Ha
Te 0.422162 0.000010 Ch. Mo, SB Ha, Ja
Zc 0.224903 0.000100 Ha, Mo Ch, SB
&1 2254.022 0.050 Ch, Ha Ja, SM
25) -2903.230 0.050 Ch, Ha Ja, SM
x(§ =0) 0.539372 0.000030 Ch, Ha Ja, SM
01 54.8218 0.0020 Ch, Ha SM
62 -62.6225 0.0020 Ch, Ha SM
x(¢=0) 0.519639 0.000030 Ch, Ha SM
Case 1b
Nu 10.534095 0.000010 Ch, Ha, Mo SB, HG
Virms 193.21454 0.00010 Ch. Ha, Mo SB, Ko
q1 19.079440 0.000040 Ch, Ha, Mo SB
q2 0.722751 0.000020 Ch. Mo Ha, SB
Te 0.428427 0.000015 Ch, Mo, SB Ha, Ja
Ze 0.111804 0.000200 Ch, Mo Ha, SB
&1 1460.99 0.10 Ch, Ha Ja
) -2004.20 0.10 Ch, Ha Ja
x (&= 0) 0.529330 0.000030 Ch, Ha Ja
o1 27.7025 0.0030 Ch, Ha SM
02 -32.0150 0.0040 Ch. Ha SM
x (6= 0) 0.512290 0.000030 Ch, Ha SM
Case Ic
Nu 21.972465 0.000020 Ch, Mo Ha,HG,Ja,Ko
Vrms 833.98977 0.00020 Ch. Mo Ha, Ko
q1 45.96425 0.00030 Ch, Ha Mo, HG
q2 0.877170 0.000010 Ch, Mo Ha, HG
Te 0.432202 0.000100 Ch, Mo Ha, Ja
Ze 0.057740 0.000050 Ch, Mo Ha
&1 931.96 0.10 Ch. Ha Ja
& -1283.80 0.10 Ch, Ha Ja
x (£=0) 0.50649 0.00005 Ch, Ha Ja
01 13.451 0.050 Ch. Ha Ko, SM
o2 -15.0033 0.080 Ch, Ha Ko, SM
x (9=0) 0.50042 0.00010C Ch, Ha Ko
Case 2a
Nu 10.0660 0.00020 Ch, Ha Cs,HG
Vrms 480.4334 0.1000 Ch, Ha Ko, Sm
ai 17.53136 0.00400 Ch, Ha HG
q2 1.00851 0.00020 Ch. Ha HG
q3 26.8085 0.0100 Ch, Ha
q4 0.497380 0.000100 Ch, Ha
Te 0.7405 0.0005 Ch, Ha HG
Zc 0.06233 0.00020 Ch. “Ha HG
Te 0.8323 0.0005 Ch, Ha
Zc 0.8243 0.0020 ¢h. Ha Cs,HG
&1 1010.92 0.20 Ch, Ha SM
E) -4098.09 0.80 Ch. Ha SM
x(£=0) 0.67700 0.00005 Ch, Ha SM
&3 386.38 0.10 Ch, Ha
&4 -788.10 0.50 Ch, Ha
x(£=0) 0.63084 0.00020 Ch, Ha
o1 17.346 0.010 Ch, Ha Ko,SM
62 -54.600 0.020 Ch, Ha Ko, SM
x(¢ = 0) 0.65993 0.00010 Ch, Ha Ko, SM
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Table 9 (contd.)

Case 2b
Nu 6.9299 0.0005
Vrims 171.755 0.020
q1 18.4842 0.0100
q2 0.17742 0.00003
q3 14.1682 0.0050
q4 0.61770 0.00005
Te 0.3970 0.0008
Zc 0.1906 0.0010
Te 0.57584 0.00050
Zc 0.7837 0.0030
&1 1538.8 3.0
&) -4341.5 1.5
x(E=0) 1.6358 0.0030
&3 2311.8 1.0
&4 -6639.7 3.0
x (E=0) 17311 0.00053
01 -11.80 0.30
62 -28.25 0.30
x(6= 0) 1.2745 0.0010
x(¢ =0) 2.3065 0.0029
Case 3
Pcriod 0.04803 0.00003
Numax 71.379 0.005
Numin 6.468 0.005
NUmax 7.196 0.005
Numin 6.796 0.005
Vvmax 60.367 0.015
vmin 31.981 0.020
vmax 57.43 0.05
Ymin 30.32 0.03

extrapolation of results, allows us to pin down the ‘correct’
solution with fairly low levels of uncertainty. We propose
that these values are used for the validation of mantle
convection codes.
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