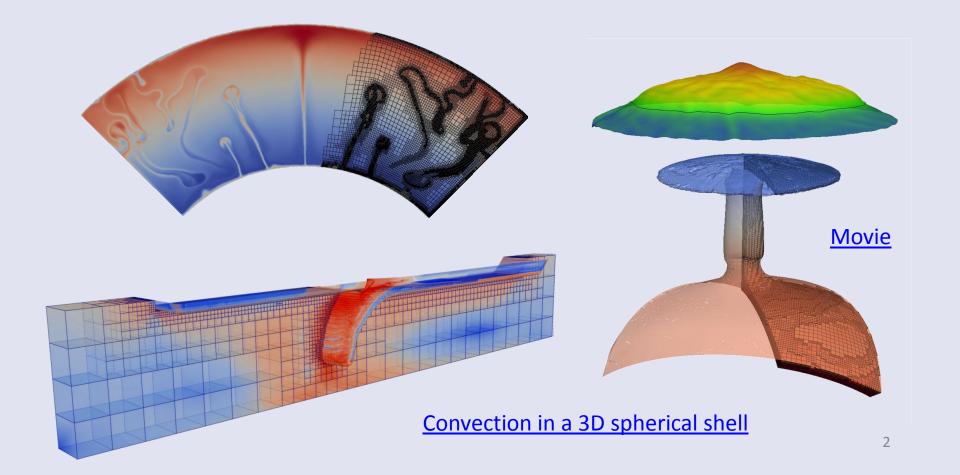


ASPECT

Introduction – Tutorial – Applications

Blockkurs Fortgeschrittene Geodynamik 09.03.2017

Anthony Osei Tutu (GFZ, Sektion 2.5) Eva Bredow (GFZ, Sektion 2.5)


What is Aspect?

ASPECT

Movie

- Advanced Solver for Problems in Earth's Convection -

Codes in Geodynamics

- Some widely used codes
- Almost no codes use adaptively refined meshes
- Almost all codes use lower order elements
- Most codes use "simple" solvers
- No code has been "designed" with a view to
 - extensibility
 - maintainability
 - correctness

Geodynamics: Design challenges CIGE

Requirements as "community code":

- solve problems of interest (to geodynamicists)
- well tested
- modern numerical methods
- easy to extend
- freely available = open code

Numerical methods

- Mesh adaptation
- Accurate discretizations (choice of finite element for velocity and pressure + nonlinear artificial diffusion for temperature stabilization)
- Efficient linear solvers (preconditioner + algebraic multigrid)
- Parallelization of all the steps above
- Modularity of the code

Credits

Website and manual:

https://aspect.dealii.org/

Developers & contributors:

Wolfgang Bangerth, Timo Heister, René Gaßmöller,

Juliane Dannberg and many more

Publications:

Kronbichler et al. 2012 GJI

Heister et al. 2017 (submitted)

Setup of the numerical model CIGE

- Model key components:
 - 1. The rules (e.g. equations) for the model
 - 2. The discretization of the model
 - 3. Model parameters
 - 4. Dependent and independent variables
 - 5. The initial state of the model
 - 6. The boundary conditions
- Look at the parameter file: cd ASPECT TUTORIAL/models/ gedit tutorial.prm

ASPECT - General

General parameters:

Internal calculations use seconds, but output in years

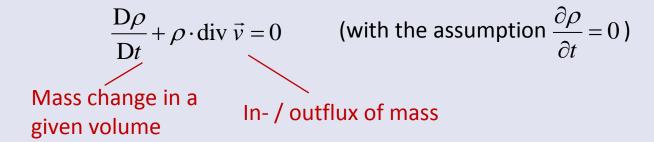
2D problem

```
3 set Dimension = 2
8 set Use years in output instead of seconds = true
9 set End time = 5e10
10 set Output directory = output
```

Simulation output will be stored in the directory named "output"

= 5x10¹⁰ years = 50 billion years

$$-\nabla \cdot \left[2\eta \left(\varepsilon(\mathbf{u}) - \frac{1}{3}(\nabla \cdot \mathbf{u})\mathbf{1}\right)\right] + \nabla p = \rho \mathbf{g}$$
 Momentum equation Divergence of Pressure Gravity stress tensor gradient force Only viscous stress (no elasticity/plasticity), no inertia (Total pressure instead of only dynamic pressure)


u	velocity	$\frac{m}{s}$
p	pressure	Pa
T	temperature	K
$\varepsilon(\mathbf{u})$	strain rate	$\frac{1}{s}$
η	viscosity	$Pa \cdot s$

ρ	density	$\frac{kg}{m^3}$
g	gravity	$\frac{m}{s^2}$
C_p	specific heat capacity	$\frac{J}{kg\cdot K}$
k	thermal conductivity	$\frac{W}{m \cdot K}$
H	intrinsic specific heat production	$\frac{W}{kg}$

$$-\nabla \cdot \left[2\eta \left(\varepsilon(\mathbf{u}) - \frac{1}{3}(\nabla \cdot \mathbf{u})\mathbf{1}\right)\right] + \nabla p = \rho \mathbf{g}$$
 Momentum equation
$$\nabla \cdot (\rho \mathbf{u}) = 0$$
 Conservation of mass

Includes compressibility

u	velocity	$\frac{m}{s}$
p	pressure	Pa
T	temperature	K
$\varepsilon(\mathbf{u})$	strain rate	$\frac{1}{s}$
η	viscosity	$Pa \cdot s$

ρ	density	$\frac{kg}{m^3}$
g	gravity	$\frac{m}{s^2}$
C_p	specific heat capacity	$\frac{J}{kg\cdot K}$
k	thermal conductivity	$\frac{W}{m \cdot K}$
H	intrinsic specific heat production	$\frac{W}{kg}$

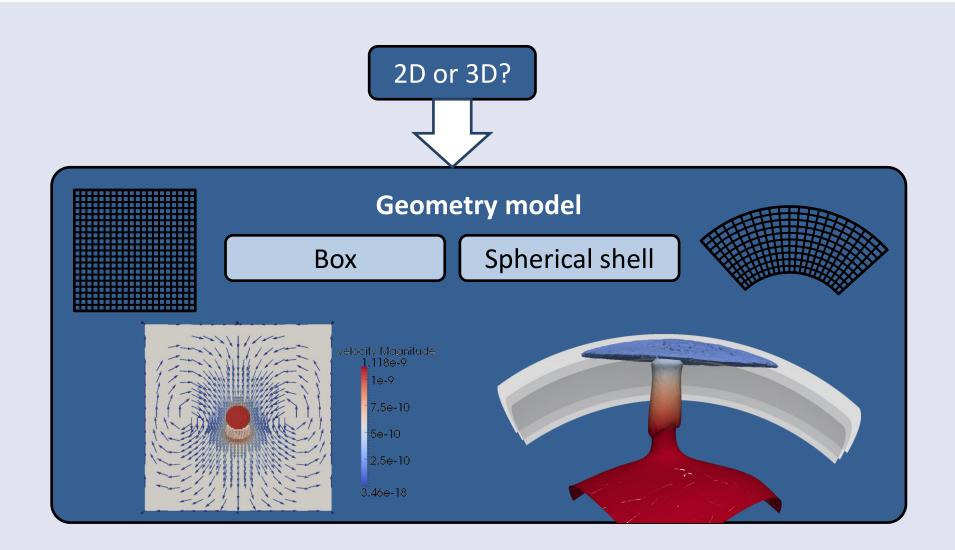
$$-\nabla\cdot\left[2\eta\left(\varepsilon(\mathbf{u})-\frac{1}{3}(\nabla\cdot\mathbf{u})\mathbf{1}\right)\right]+\nabla p=\rho\mathbf{g}\qquad \text{Momentum equation}$$

$$\nabla\cdot\left(\rho\mathbf{u}\right)=0\qquad \text{Conservation of mass}$$

$$\rho C_p\left(\frac{\partial T}{\partial t}+\mathbf{u}\cdot\nabla T\right)-\nabla\cdot k\nabla T=\rho H\qquad \text{Conservation of energy}$$

$$\begin{array}{c} \text{Change of energy over time} \\ \text{time} \end{array} \right. \\ +2\eta\left(\varepsilon(\mathbf{u})-\frac{1}{3}(\nabla\cdot\mathbf{u})\mathbf{1}\right):\left(\varepsilon(\mathbf{u})-\frac{1}{3}(\nabla\cdot\mathbf{u})\mathbf{1}\right)\\ -\frac{\partial\rho}{\partial T}T\mathbf{u}\cdot\mathbf{g} \\ \text{Shear heating} \\ +\rho T\cdot\Delta S\frac{DX}{Dt} \\ \end{array} \\ \text{Adiabatic heating} \\ \begin{array}{c} \frac{\partial\rho}{\partial T}=-\rho\alpha \end{array}$$

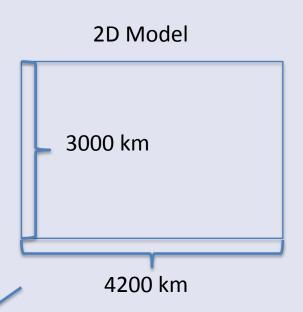
latent heat (phase changes)



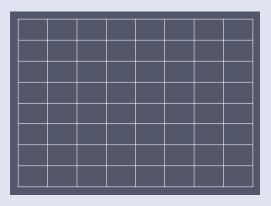
Field method (instead of tracer method)

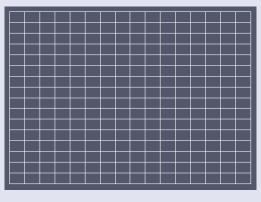
$$\begin{split} -\nabla \cdot \left[2\eta \left(\varepsilon(\mathbf{u}) - \frac{1}{3} (\nabla \cdot \mathbf{u}) \mathbf{1} \right) \right] + \nabla p &= \rho \mathbf{g} \qquad \text{Momentum equation} \\ \nabla \cdot (\rho \mathbf{u}) &= 0 \qquad \text{Conservation of mass} \\ \rho C_p \left(\frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T \right) - \nabla \cdot k \nabla T &= \rho H \qquad \text{Conservation of energy} \\ &+ 2\eta \left(\varepsilon(\mathbf{u}) - \frac{1}{3} (\nabla \cdot \mathbf{u}) \mathbf{1} \right) : \left(\varepsilon(\mathbf{u}) - \frac{1}{3} (\nabla \cdot \mathbf{u}) \mathbf{1} \right) \\ &- \frac{\partial \rho}{\partial T} T \mathbf{u} \cdot \mathbf{g} \qquad + \rho T \cdot \Delta S \frac{DX}{Dt} \\ \frac{\partial c_i}{\partial t} + \mathbf{u} \cdot \nabla c_i &= 0 \qquad \text{Advection of compositional fields} \end{split}$$

Geometry model

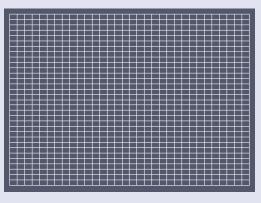


ASPECT - Geometry


- 2D box = rectangle,3D box = cuboid
- Depth of the box = 3×10^6 m
- Width of the box = $4.2 \times 10^6 \text{ m}$
- Make sure that various units fit together!


```
21 subsection Geometry model
22 set Model name = box
23 subsection Box
24 set X extent = 4.2e6
25 set Y extent = 3e6
26 end
27 end
```

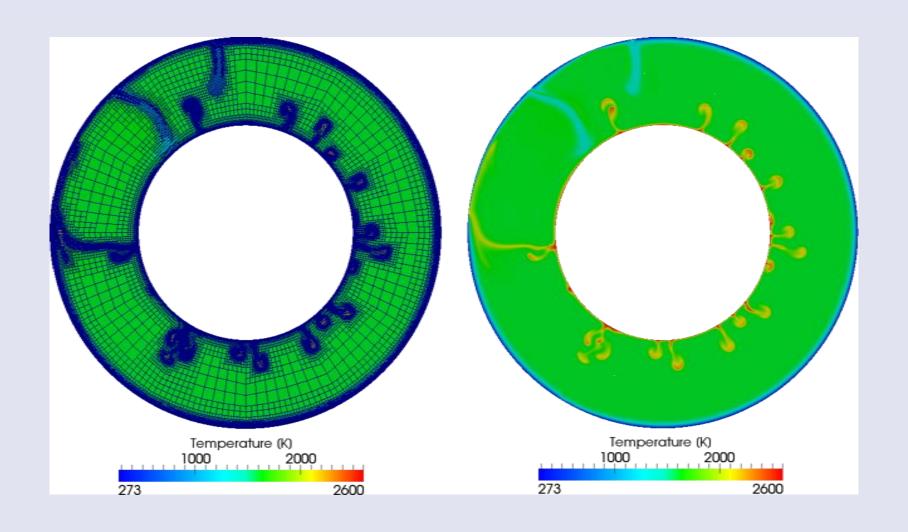
ASPECT - Discretization



REFINE=3 (8x8 cells)

REFINE=4 (16x16 cells)

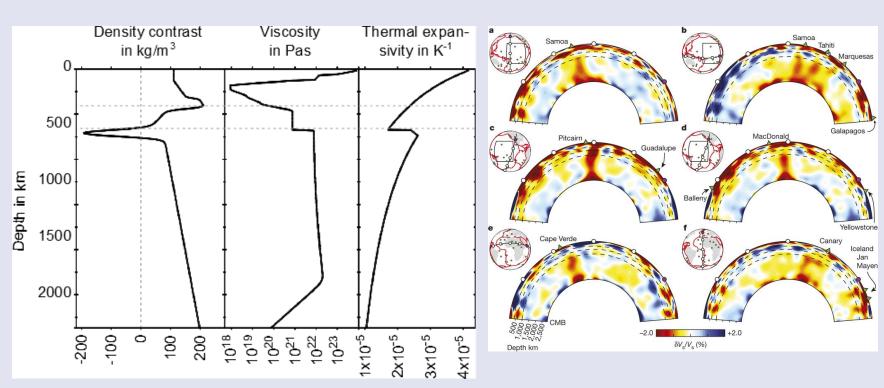
REFINE=5 (32x32 cells)


34	subse	ection Mesh refinement
35		set Initial global refinement = REFINE
35 36 37		set Initial adaptive refinement = 0
37		set Time steps between mesh refinement = 0
38	end	

"grid spacing" of the mesh, for this tutorial: REFINE = 3 or 4 or 5

turned off → the mesh does not change during the simulation

Mesh adaptation



Material model

Input:

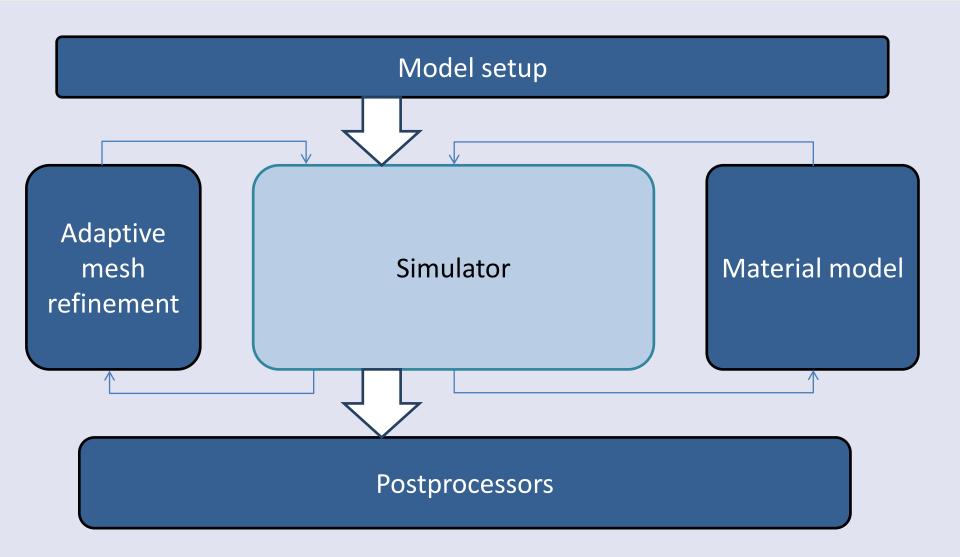
Temperature, pressure, composition, strain rate, position

Densities for example from seismic tomography velocities

ASPECT - Model Parameters

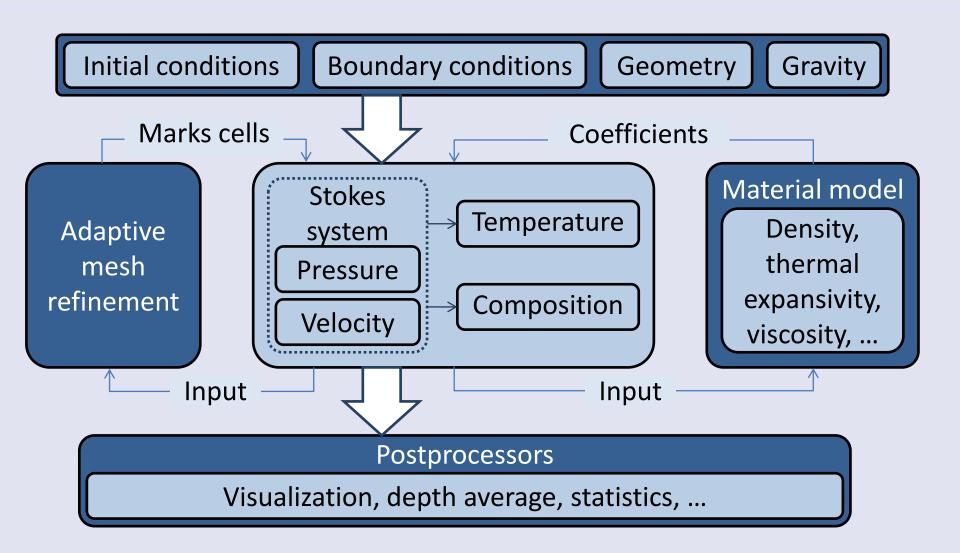
- Use a built in material model or implement your own
- Several parameters which control reference density, temperature dependence of viscosity, etc.

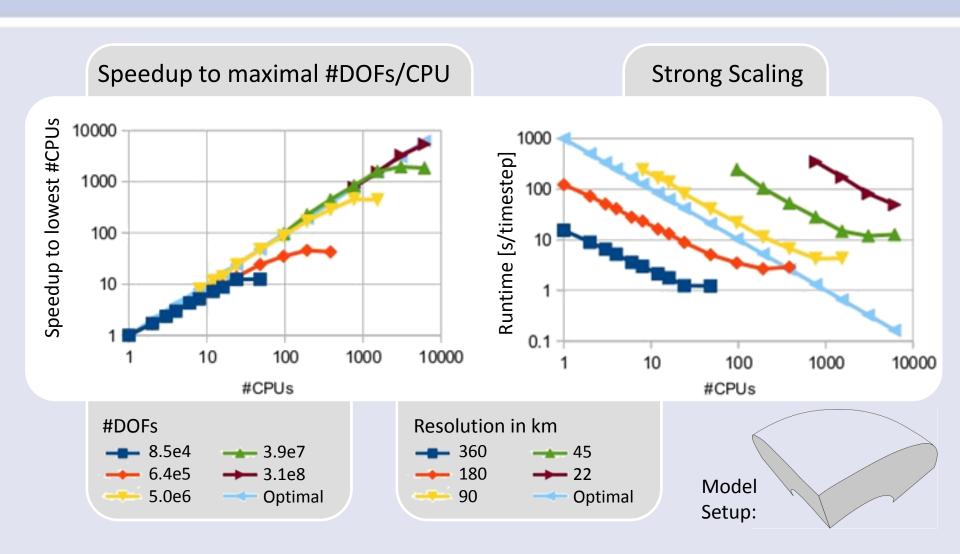
Default Values:


$$\rho_0 = 3300, g = 9.8, \alpha = 2 \times 10^{-5}, \Delta T = (3600 - 273) = 3327$$

$$D = 3 \times 10^6, k = 4.7, c_p = 1250, \kappa = \frac{k}{\rho_0 c_p} = 1.1394 \times 10^{-6}$$

44	subsection Gravity model	51	subsection Material model
45	set Model name = vertical	52	set Model name = simple
46	subsection Vertical	53	subsection Simple model
47	set Magnitude = 9.8	54	set Viscosity = VISCOSITY
48	end	55	end
49	end	56	end

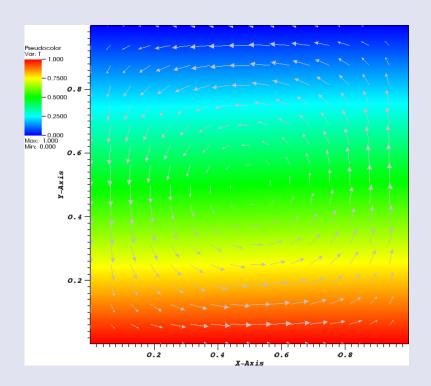

Modularity


Modularity

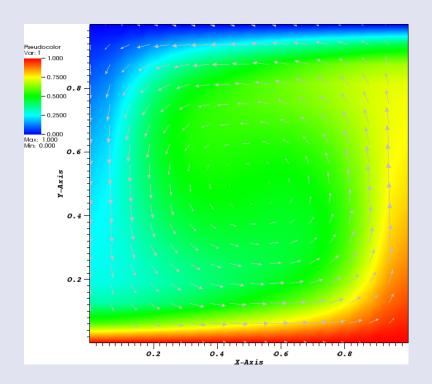
Scaling

Scales almost linearly = excellent parallelization!

Exercise 1 Convection in a 2D Box


Nusselt-Rayleigh Relationship & Visualization with ParaView

Nusselt-Rayleigh Relationship Closer Closer



Convection in a 2D Box

(free slip boundaries)

Initial temperature and velocity field

Final temperature and velocity field

Nusselt-Rayleigh Relationship Closerastru Geodyn

 In this tutorial, you control the Rayleigh number Ra with the viscosity n:

$$Ra = \frac{\rho_0 g \alpha \Delta T D^3}{\eta \kappa}$$

Ra = dimensionless parameter, indicates the presence and strength of convection in the mantle

$$\eta = \frac{\rho_0 g \alpha \Delta T D^3}{\kappa R a}$$

$$\rho_0$$
 = reference density

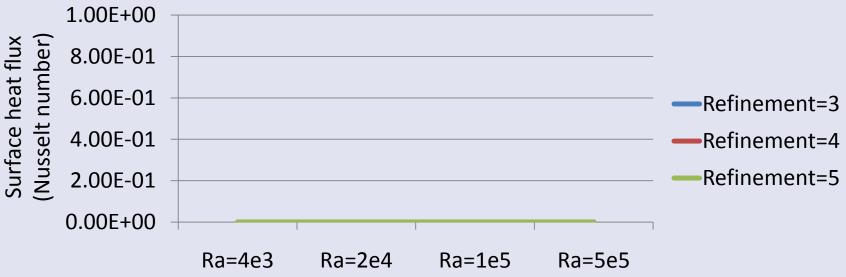
$$= \frac{5.0993 \times 10^{28}}{Ra}$$

$$\alpha$$
 = thermal expansion coefficient

$$D = depth$$

Nusselt-Rayleigh Relationship CIG New Control CIG Not Cig Not

 Nusselt number Nu = the ratio of convective to conductive heat transfer, related to the surface heat flux

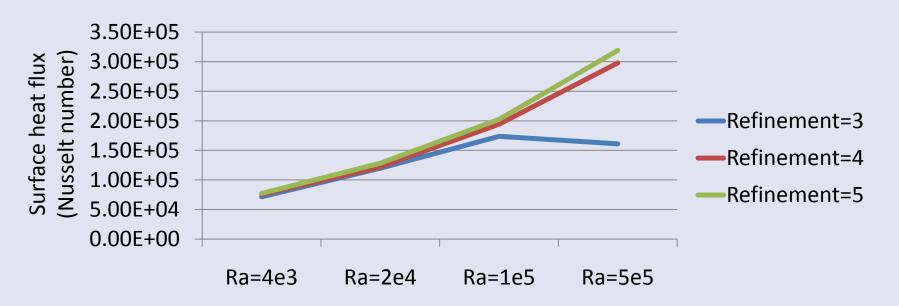

Questions

- If the Rayleigh number goes up, how does the Nusselt number change?
- How does the mesh resolution affect the accuracy of these results?

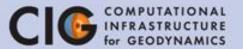
Nusselt-Rayleigh Relationship Closures

	Ra=4,000	Ra=20,000	Ra=100,000	Ra=500,000
End Time	1e12	2e11	3e10	5e9
Viscosity	1.275E25	2.550E24	5.099E23	1.020E23
Refine = 3	(???)	(???)	(???)	(???)
Refine = 4	(???)	(???)	(???)	(???)

Nusselt-Rayleigh Relationship CIG INFRAS


Just a hint: To stop

- Modify the refinement, end time, and Rayleigh number in tutorial.prm
- Run ASPECT with the tutorial parameter file aspect tutorial.prm
- Look at the log gedit output/log.txt
- 4. Look at the statistics output gedit output/statistics
- the calculations, press Ctrl + C
- Plot the results in gnuplot (time vs. heat flux) gnuplot plot "output/statistics" using 2:20 with lines;

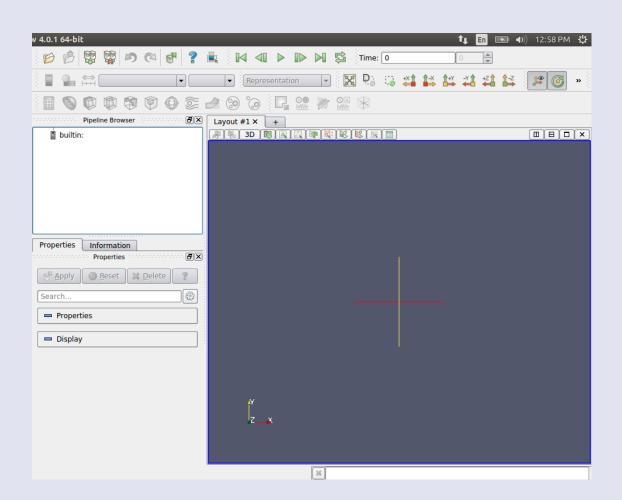

Nusselt-Rayleigh Relationship Closer Closer GEO

	Ra=4,000	Ra=20,000	Ra=100,000	Ra=500,000
End Time	1e12	2e11	3e10	5e9
Viscosity	1.275E25	2.550E24	5.099E23	1.020E23
Refine = 3	7.14e4	1.20e5	1.74e5	1.61e5
Refine = 4	7.54e4	1.22e5	1.94e5	2.98e5
Refine = 5	7.72e4	1.28e5	2.02e5	3.19e5

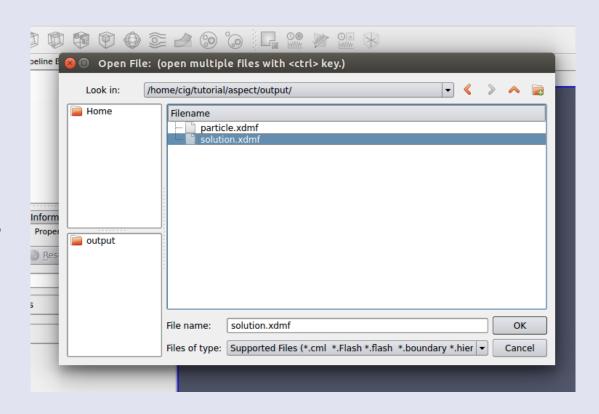
Nusselt-Rayleigh Relationship CIG INFRA

 If the Rayleigh number goes up, how does the Nusselt number change?

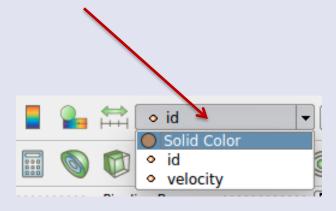
if Ra goes up -> Nu goes up

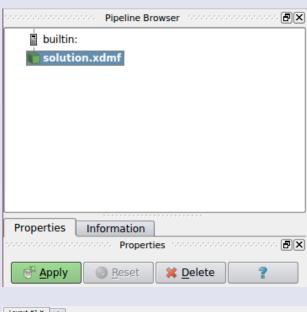

 How does the mesh resolution affect the accuracy of these results?

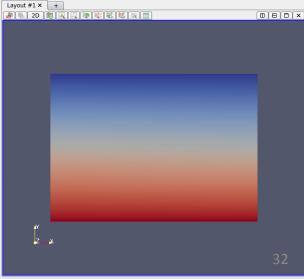
if mesh refinement is too low, the result for high Ra is no longer accurate!



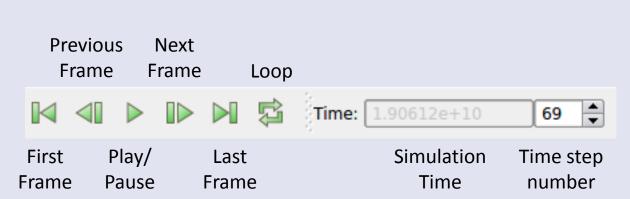
= program for visualizationof large data sets

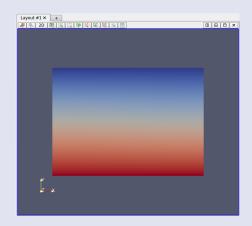


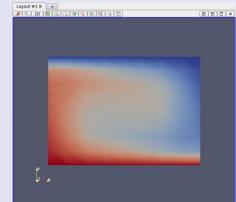

- Aspect creates the file solution.pvd
- choose "Open" from theFile menu
- The file is in ASPECT_TUTORIAL/models/output/



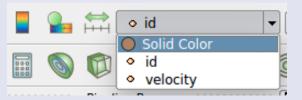
- the file contains the variables temperature (T), pressure (p), and velocity
- click "Apply" + Select "T" in the toolbar to show the temperature field

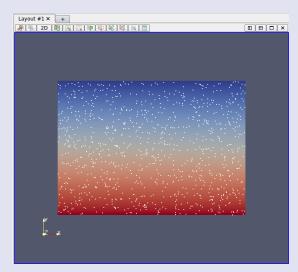






 change the time in the top toolbar + click "Play"

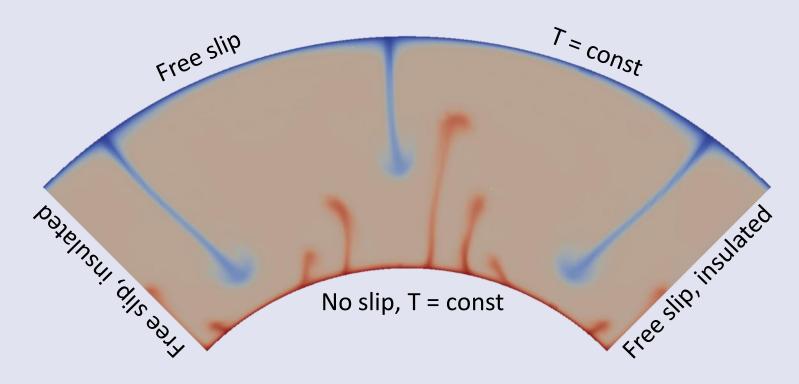

Frame 0


Frame 231

- Open the file particle.pvd and click "Apply" to see the tracer particles
- Click "play" to see how material is flowing with the tracer particles

Change the coloring scheme to "Solid Color"

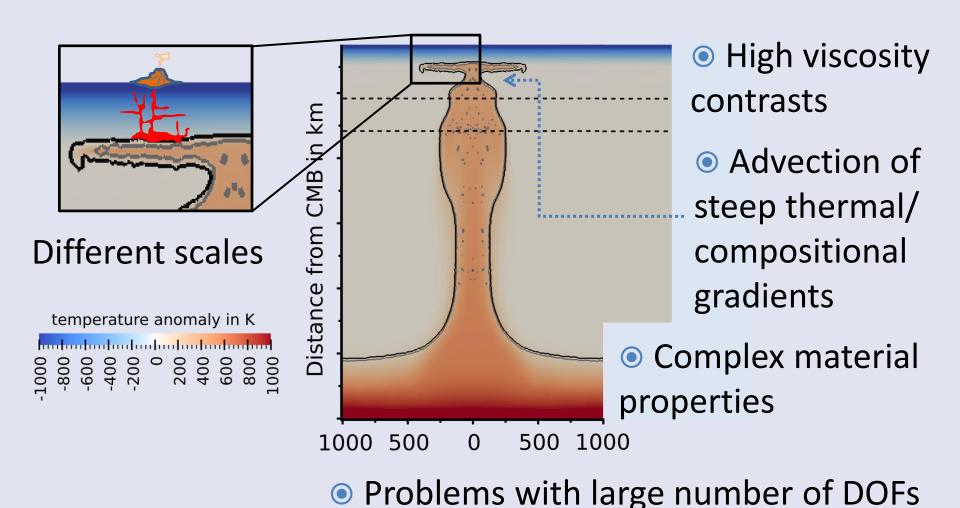
Temperature field with tracer particles



Exercise 2 Convection in a 2D spherical shell

Adaptive mesh refinement & Spherical shell geometry & Visualization

Setup: Convection in a Shell



- Geometry: Quarter of a spherical shell
- Constant initial temperature with a perturbation to start the upwelling

Numerical Challenges

Questions:

- How does the flow field change with varying the resolution?
- How does the runtime change with the adaptive refinement compared to global refinement?

Material model


```
= 1600
set Adiabatic surface temperature
subsection Material model
                                                       These
  set Model name = simple
                                                     should be
  subsection Simple model
                                                      the same
    set Thermal expansion coefficient = 2e-5
                                        = 3e21
    set Viscosity
    set Thermal viscosity exponent
                                        = 3
                                        = 1600
    set Reference temperature
  end
end
                            Temperature-
                         dependent viscosity
```

Geometry & gravity model


```
subsection Geometry model
  set Model name = spherical shell
  subsection Spherical shell
    set Inner radius = 3481000
    set Outer radius = 6336000
    set Opening angle = 90
  end
end
subsection Gravity model
  set Model name = radial earth-like
end
```

The gravity model has to be changed together with the geometry

Initial conditions


```
subsection Initial conditions
set Model name = adiabatic

subsection Adiabatic
subsection Adiabatic
set Amplitude = 10
set Radius = 500000
end
end
```

Boundary conditions


```
subsection Model settings
  set Zero velocity boundary indicators = 0
  set Tangential velocity boundary indicators = 1, 2, 3

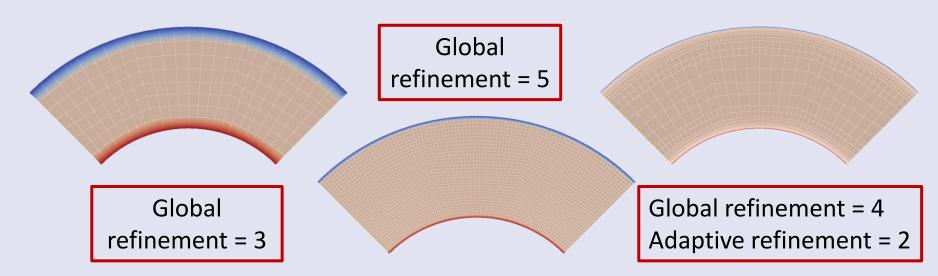
set Prescribed velocity boundary indicators =
  set Fixed temperature boundary indicators = 0, 1

set Include shear heating = false
  set Include adiabatic heating = false
end
```

Boundary conditions

Exactly the same as:

```
subsection Model settings
  set Zero velocity boundary indicators = inner
  set Tangential velocity boundary indicators =
  outer, left, right
  set Prescribed velocity boundary indicators =
  set Fixed temperature boundary indicators = inner, outer

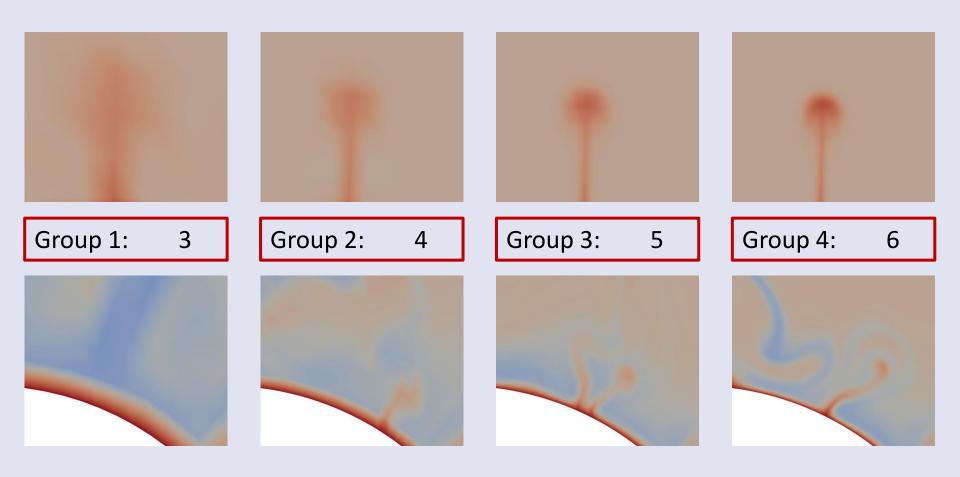

set Include shear heating = false
  set Include adiabatic heating = false
end
```

Mesh refinement

This is what needs to be changed: Group 1: 3, Group 2: 4, Group 3: 5

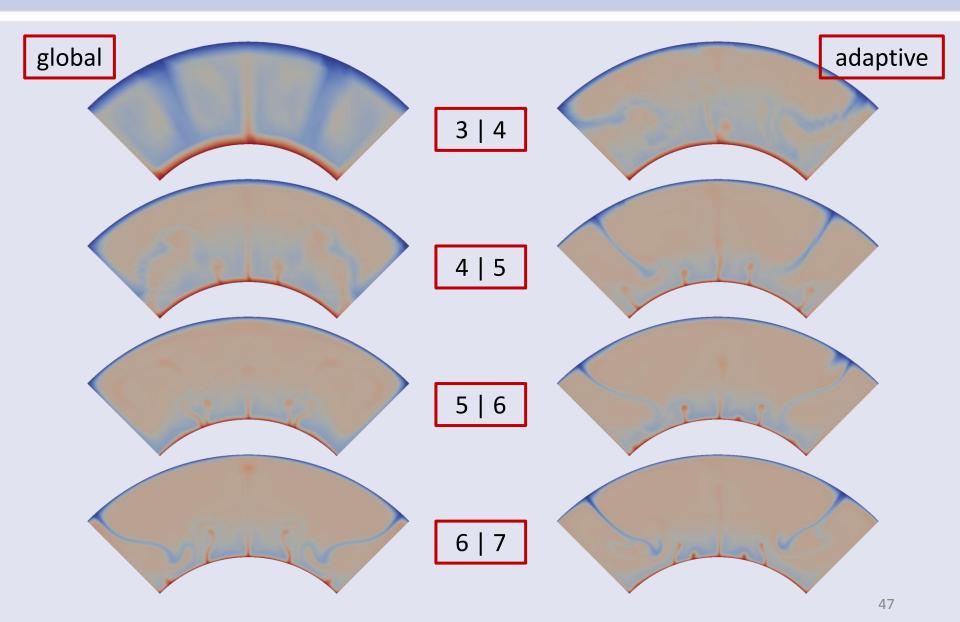
```
subsection Mesh refinement
set Initial global refinement = 5
set Initial adaptive refinement = 0
set Strategy = temperature
set Time steps between mesh refinement = 0
set Coarsening fraction = 0.05
set Refinement fraction = 0.3
end
```


Tasks



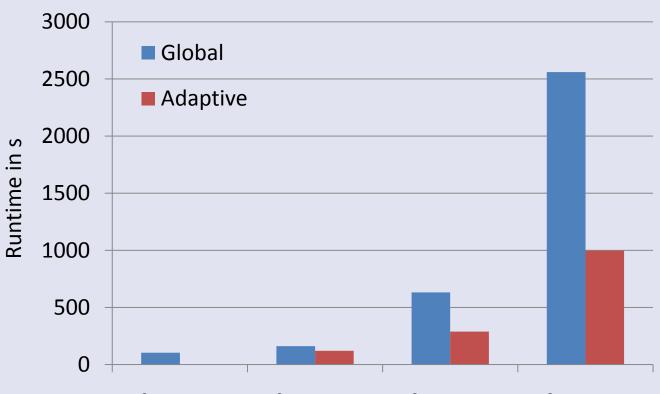
- Modify the spherical_shell.prm file to use your assigned refinement number gedit spherical_shell.prm
- Run the simulation aspect spherical_shell.prm or in parallel mpirun -np 2 aspect spherical_shell.prm
- Visualize the results with Paraview ASPECT_TUTORIAL/models/spherical-shell/ ouput.pvd

Just a hint: To stop the calculations, press Ctrl + C


Time snapshots of models with different resolution

Results

How does the flow field change with varying the resolution?



Results

How does the runtime change with the adaptive refinement compared to global refinement?

Refinement 3 Refinement 4 Refinement 5 Refinement 6