Initial value problems for pdes

We start with the diffusion equation in $1+1$ dimension:

$$
\frac{\partial u}{\partial t}=D \frac{\partial^{2} u}{\partial x^{2}}
$$

We have already written down a discrete version of this.
Forward Time, Centred Space

$$
\begin{equation*}
\frac{u_{j}^{(n+1)}-u_{j}^{(n)}}{\Delta t}=\frac{D}{a^{2}}\left(u_{j-1}^{(n)}-2 u_{j}^{(n)}+u_{j+1}^{(n)}\right) \tag{1}
\end{equation*}
$$

Stability analysis

von Neumann analysis (not rigorous)
Fourier transform in space: $u(x)=\sum_{k} e^{i k x} u(k)$
Each $u(k)$ evolves independently in time
(at least for linear problems with constant coeffs)
This gives the eigenmode evolution

$$
\begin{equation*}
u_{k}^{(n+1)}=\xi_{k} u_{k}^{(n)} \quad \Longrightarrow \quad u_{j}^{(n)}=u_{0}^{(0)} \xi_{k}^{n} e^{i k j a} \tag{2}
\end{equation*}
$$

To find amplification factor ξ_{k}, substitute (2) into finite difference equation

$$
\xi_{k} \begin{cases}>1 & \text { exponential growth, instability } \\ <1 & \text { exponential damping, stability } \\ =1 & \text { more detailed analysis needed }\end{cases}
$$

von Neumann stability: $\left|\xi_{k}\right| \leq 1 \forall k$

Stability for FTCS

Inserting the eigenmode evolution (2) into the FTCS equation (1) gives

$$
\begin{gathered}
\frac{\xi_{k}^{n+1}-\xi_{k}^{n}}{\Delta t}=\frac{D}{a^{2}} \xi_{k}^{n}\left(e^{i k(j-1) a}-2 e^{i k j a}+e^{i k(j+1) a}\right) \\
\xi_{k}=1+\frac{D \Delta t}{a^{2}}\left(e^{-i k a}-2+e^{i k a}\right)=1-\frac{4 D \Delta t}{a^{2}} \sin ^{2} \frac{k a}{2}
\end{gathered}
$$

Since this is always ≤ 1 stability means that $\xi_{k} \geq-1$

$$
\Longrightarrow \frac{4 D \Delta t}{a^{2}} \sin ^{2} \frac{k a}{2} \leq 2 .
$$

'Worst case': $\sin ^{2}(k a / 2)=1$

$$
\text { Stability condition: } \quad \frac{\Delta t}{a^{2}} \leq \frac{1}{2 D}
$$

An example

The MatLab files ftcs.m, gaussbc.m and ftcs_driver.m solve the diffusion equation with the initial distribution

$$
u_{0}(x)=u\left(x, t_{0}\right)=e^{-x^{2} / 4 D t_{0}}, \quad-5 \leq x \leq 5, t_{0}=0.1,
$$

and boundary conditions

$$
u\left(\pm x_{0}, t\right)=\sqrt{\frac{t_{0}}{t}} e^{-x_{0}^{2} / 4 D t}, \quad x_{0}=5 .
$$

The grid spacing in the x direction has been set to $a=0.05$, and the diffusion constant $D=1$.
ftcs_driver (dt, t) plots the solution for time step dt at time(s) t .
Run this with $d t=0.0012$ and see what you get.
Then run with $\mathrm{dt}=0.0013$ and see what happens.

FTCS in $2+1$ dimension

Our Ansatz is now

$$
\begin{equation*}
u_{j l}^{(n)}=u_{0} \xi_{k}^{n} e^{i k_{x} j \Delta x} e^{i k_{y} / \Delta y} \tag{3}
\end{equation*}
$$

For $\Delta x=\Delta y=a$ the FTCS scheme is

$$
\frac{u_{j l}^{(n+1)}-u_{j l}^{(n)}}{\Delta t}=\frac{D}{a^{2}}\left(u_{j-1, l}^{(n)}+u_{j, l-1}^{(n)}+u_{j+1, l}^{(n)}+u_{j, l+1}^{(n)}-4 u_{j l}^{(n)}\right)
$$

Inserting (3) gives

$$
\begin{aligned}
\xi_{k} & =1+\frac{D \Delta t}{a^{2}}\left(e^{-i k_{x} a}+e^{-i k_{y} a}+e^{i k_{x} a}+e^{i k_{y} a}-4\right) \\
& =1-\frac{4 D \Delta t}{a^{2}}\left(\sin ^{2} \frac{k_{x} a}{2}+\sin ^{2} \frac{k_{y} a}{2}\right)
\end{aligned}
$$

$$
\left|\xi_{k}\right| \leq 1 \forall k \Longrightarrow \frac{\Delta t}{a^{2}} \leq \frac{1}{4 D}
$$

A pain in the neck

We do not like the stability condition!

- We want to model features at large scales $\lambda \gg a$

Typical diffusion time is $\tau \sim \lambda^{2} / D$
\rightarrow need $n=\frac{\tau}{\Delta t} \sim \frac{\lambda^{2}}{a^{2}}$ time steps

- We want to improve accuracy by reducing a

But if $a \rightarrow a / 2$ then $\Delta t \rightarrow \Delta t / 4$
$\rightarrow 8$ times as much cpu time!
Can we improve on this?

Second order time derivative?

FTCS is first-order accurate in time, second order in space What about using second-order differencing in time?

Centred Time Centred Space

$$
\frac{u_{j}^{(n+1)}-u_{j}^{(n-1)}}{2 \Delta t}=\frac{D}{a^{2}}\left(u_{j-1}^{(n)}-2 u_{j}^{(n)}+u_{j+1}^{(n)}\right)
$$

von Neumann

$$
\begin{gathered}
\xi_{k}-\frac{1}{\xi_{k}}=-\frac{8 D \Delta t}{a^{2}} \sin ^{2} \frac{k a}{2} \\
\Longrightarrow \xi_{k}=-\frac{4 D \Delta t}{a^{2}} \sin ^{2} \frac{k a}{2} \pm \sqrt{1+\left(\frac{4 D \Delta t}{a^{2}} \sin ^{2} \frac{k a}{2}\right)^{2}}
\end{gathered}
$$

The $(-)$ mode is unstable for all k and Δt !
CTCS is unconditionally unstable

Implicit schemes: BTCS

Explicit scheme: $\frac{\partial^{2} u}{\partial x^{2}}$ evaluated at t
Implicit scheme: evaluate at $t+\Delta t$

Backward Time, Centred Space

$$
\begin{gathered}
\frac{u_{j}^{(n+1)}-u_{j}^{(n)}}{\Delta t}=\frac{u_{j-1}^{(n+1)}-2 u_{j}^{(n+1)}+u_{j+1}^{(n+1)}}{a^{2}} \\
\Longrightarrow\left(1+\frac{2 \Delta t}{a^{2}}\right) u_{j}^{(n+1)}-\frac{\Delta t}{a^{2}}\left(u_{j-1}^{(n+1)}+u_{j+1}^{(n+1)}\right)=u_{j}^{(n)}
\end{gathered}
$$

We get a sparse matrix equation for $u^{(n+1)}$.
von Neumann analysis

$$
\frac{\xi-1}{\Delta t}=\frac{\xi}{a^{2}}\left(e^{i k a}-2+e^{-i k a}\right) \quad \Longrightarrow \xi=\frac{1}{1+\frac{4 \Delta t}{a^{2}} \sin ^{2} \frac{k a}{2}}
$$

$\xi<1$ for all $k, \Delta t$: BTCS is unconditionally stable

Crank-Nicolson

BTCS is stable, but only first-order accurate in time. How can we get second-order accuracy?

Average FTCS and BTCS!

(the same as taking a centred time derivative around $t+\Delta t / 2$)

$$
\frac{u_{j}^{(n+1)}-u_{j}^{(n)}}{\Delta t}=\frac{1}{2 a^{2}}[\underbrace{u_{j+1}^{(n+1)}-2 u_{j}^{(n+1)}+u_{j-1}^{(n+1)}}_{\text {FTCS }}+\underbrace{u_{j+1}^{(n)}-2 u_{j}^{(n)}+u_{j-1}^{(n)}}_{\text {BTCS }}]
$$

Crank-Nicolson

$$
\left(1+\frac{\Delta t}{a^{2}}\right) u_{j}^{(n+1)}-\frac{\Delta t}{2 a^{2}}\left(u_{j-1}^{(n+1)}+u_{j+1}^{(n+1)}\right)=\left(1-\frac{\Delta t}{a^{2}}\right) u_{j}^{(n)}+\frac{\Delta t}{2 a^{2}}\left(u_{j-1}^{(n)}+u_{j+1}^{(n)}\right)
$$

Stability of Crank-Nicolson

von Neumann analysis

$$
\begin{aligned}
& \xi\left(1-\frac{-4 \Delta t}{2 a^{2}} \sin ^{2} \frac{k a}{2}\right)=1+\frac{-4 \Delta t}{2 a^{2}} \sin ^{2} \frac{k a}{2} \\
& \Longrightarrow \xi=\frac{1-\frac{2 \Delta t}{a^{2}} \sin ^{2} \frac{k a}{2}}{1+\frac{2 \Delta t}{a^{2}} \sin ^{2} \frac{k a}{2}}=\frac{1-b^{2}}{1+b^{2}}
\end{aligned}
$$

The modulus of the numerator is always smaller than the denominator
Crank-Nicolson is unconditionally stable

