
Initial value problems for pdes

We start with the diffusion equation in 1+1 dimension:

∂u

∂t
= D

∂2u

∂x2

We have already written down a discrete version of this.

Forward Time, Centred Space

u(n+1)
j − u(n)

j

∆t
=

D

a2

(
u(n)
j−1 − 2u(n)

j + u(n)
j+1

)
(1)



Stability analysis

von Neumann analysis (not rigorous)

Fourier transform in space: u(x) =
∑

k e ikxu(k)
Each u(k) evolves independently in time

(at least for linear problems with constant coeffs)

This gives the eigenmode evolution

u(n+1)
k = ξku(n)

k =⇒ u(n)
j = u(0)

0 ξn
ke ikja (2)

To find amplification factor ξk , substitute (2) into finite difference equation

ξk






> 1 exponential growth, instability

< 1 exponential damping, stability

= 1 more detailed analysis needed

von Neumann stability: |ξk | ≤ 1∀k



Stability for FTCS

Inserting the eigenmode evolution (2) into the FTCS equation (1) gives

ξn+1
k − ξn

k

∆t
=

D

a2
ξn
k

(
e ik(j−1)a − 2e ikja + e ik(j+1)a

)

ξk = 1 +
D∆t

a2

(
e−ika − 2 + e ika

)
= 1 − 4D∆t

a2
sin2 ka

2

Since this is always ≤ 1 stability means that ξk ≥ −1

=⇒ 4D∆t

a2
sin2 ka

2
≤ 2 .

‘Worst case’: sin2(ka/2) = 1

Stability condition:
∆t

a2
≤ 1

2D



An example

The MatLab files ftcs.m, gaussbc.m and ftcs driver.m solve the
diffusion equation with the initial distribution

u0(x) = u(x , t0) = e−x2/4Dt0 , −5 ≤ x ≤ 5 , t0 = 0.1 ,

and boundary conditions

u(±x0, t) =

√
t0
t

e−x2
0 /4Dt , x0 = 5 .

The grid spacing in the x direction has been set to a = 0.05, and the
diffusion constant D = 1.

ftcs driver(dt,t) plots the solution for time step dt at time(s) t.

Run this with dt=0.0012 and see what you get.
Then run with dt=0.0013 and see what happens.



FTCS in 2+1 dimension
Our Ansatz is now

u(n)
jl = u0ξ

n
ke ikx j∆xe iky l∆y (3)

For ∆x = ∆y = a the FTCS scheme is

u(n+1)
jl − u(n)

jl

∆t
=

D

a2

(
u(n)
j−1,l + u(n)

j ,l−1 + u(n)
j+1,l + u(n)

j ,l+1 − 4u(n)
jl

)

Inserting (3) gives

ξk = 1 +
D∆t

a2

(
e−ikxa + e−iky a + e ikxa + e iky a − 4

)

= 1 − 4D∆t

a2

(
sin2 kxa

2
+ sin2 kya

2

)

|ξk | ≤ 1∀k =⇒ ∆t

a2
≤ 1

4D



A pain in the neck

We do not like the stability condition!

We want to model features at large scales λ & a
Typical diffusion time is τ ∼ λ2/D

→ need n = τ
∆t ∼ λ2

a2 time steps

We want to improve accuracy by reducing a
But if a → a/2 then ∆t → ∆t/4
→ 8 times as much cpu time!

Can we improve on this?



Second order time derivative?

FTCS is first-order accurate in time, second order in space

What about using second-order differencing in time?

Centred Time Centred Space

u(n+1)
j − u(n−1)

j
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D
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(
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)

von Neumann

ξk − 1
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2

=⇒ ξk = −4D∆t
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2
±

√
1 +

(4D∆t

a2
sin2 ka

2

)2

The (−) mode is unstable for all k and ∆t!
CTCS is unconditionally unstable



Implicit schemes: BTCS

Explicit scheme: ∂2u
∂x2 evaluated at t

Implicit scheme: evaluate at t + ∆t

Backward Time, Centred Space
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We get a sparse matrix equation for u(n+1).

von Neumann analysis
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∆t
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(
e ika − 2 + e−ika

)
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2

ξ < 1 for all k,∆t: BTCS is unconditionally stable



Crank–Nicolson

BTCS is stable, but only first-order accurate in time.
How can we get second-order accuracy?

Average FTCS and BTCS!
(the same as taking a centred time derivative around t + ∆t/2)
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Stability of Crank-Nicolson

von Neumann analysis

ξ
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=
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The modulus of the numerator is always smaller than the denominator

Crank-Nicolson is unconditionally stable


