Lecture 8. Physics of
Earthquakes
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Some basic facts and questions

Recent great earthquakes in Chili (2010, Mw=8.8)
and in Japan (2011, Mw=9.0)

Megathrust earthquakes and structure of the
upper plate

Cross-scale dynamic models



Some basic facts

The cause of larger earthquakes is the plate
tectonics and most of them happen at plate
boundaries

About 80% of relative plate motion on
continental boundaries is accommodated in
rapid earthquakes

With few exceptions, earthquakes do not
generally occur at regular intervals in time or
space.



Some basic facts

The shear strain change associated with large
earthquakes (i.e. coseismic strain drop) is of the order of
10-°— 10-4. This corresponds to a change in shear stress
(i.e. static stress drop) of about 1-10 MPa.

The repeat times of major earthquakes at a given place
are about 100-1000 years on plate boundaries, and
1000-10 000 years within plates.

The rupture velocity for large earthquakes is typically
75-95% of the S-wave velocity



Some basic facts

Stress Change and Earthquake Sequence
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Some basic facts

Definitions and scaling

Seismic moment: My = G-D-S, G-shear modulus, D-average
displacement, S-rupture area

I
Average stressdrop Ao, = 3 f AogdS.
O Js

Ao, =~ C-G-'D /L, L-characteristic rupture length L= S1/2

Aog ~ C-M,S372 or
My~ Ao -S%?2; D =812 Ao /G

Moment magnitude: M,, = 2/3 log,y,(M;)-6.07



S, km

Some basic facts

M, 107N m
Kanamori and Brodsky, 2004
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That means

Aog = const

Mean value of Aoy
is about 3 MPa

MOz .&—C}-q - G372 ’

D= 812 Aoy IG



Some basic facts

The magnitude—frequency relationship (the
Gutenberg—Richter relation)
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AT, degree

Thermal effect of Eq.
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Some basic questions

Why some plate boundaries glide past each
other smoothly, while others are punctuated
by catastrophic failures?

Why do some earthquakes stop after only a
few hundred meters while others continue
rupturing for a thousand kilometers?

How do nearby earthquakes interact?
Are earthquakes sometimes triggered by

other large earthquakes thousands of
kilometers away or not?



Great Earthquakes challenges

ACCUMULATING EARTHQUAKES
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Why the greatest earthquakes occur in the weakest
zones? Do they indeed cluster?



Subduction zone earthquakes

Seismogenic¢ zone
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Subduction zone earthquakes

Seismogenic zone

A.

Coupling

Scholz and Campos, 2012
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Slip distribution

Valdivia earthquake

(1960)
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Japan

Location near the east coast of Honshu,

Magniude 8.9



Locking of plates

Slip, max: 36m
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Perspectives: Cross-scale
dynamic models



Elastic deformation is included in our geological-
time-scale (min years) Andes model

Full set of equations
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Frictional instabilities governed by static-kinetic friction

The static-kinetic (or slip-
weakening) friction:
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Frictional instabilities governed by rate- and state-dependent friction

Dieterich-Ruina friction:

iz,uzlu*Jraln V* +blIn o
o, 4 D,
and
o _,_ o
dt D.’
At steady state:
7

p=p +(a—b)n

%k

v

were.

« VV and 0 are sliding speed and contact state, respectively.
* a, b and a are non-dimensional empirical parameters.

* D, is a characteristic sliding distance.

* The * stands for a reference value.



How b-a changes with depth ?
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The depth dependence of b-a may explain the seismicity depth distribution
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Subduction zone earthquakes

Seismogenic zone

A.

Coupling

Scholz and Campos, 2012



Subduction zone earthquakes

Seismogenic zone
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Subduction zone earthquakes

Seismogenic zone

1. Earthquake: minute

2. Aftertslip (fault control) hours-1 year, V
=1/t

3. Visco-elastic relaxation (wedge control)
year-decades

Mantle Wedge



Our aim was to develop the thermo-mechanical model able to:

« Replicate long-term (10°yr) evolution of subduction zone
» Generate earthquakes as spontaneous mechanical instabilities

» Replicate all stages of seismic cycle and multiple cycles in time
scale range from minute to 10%yr



Our aim was to develop the thermo-mechanical model able to:

Replicate long-term (108yr) evolution of subduction zone

Generate earthquakes as spontaneous mechanical instabilities

Replicate all stages of seismic cycle and multiple cycles in time
scale range from minute to 10%yr

And all that with mineral-physics-based rheology



Technique FEM code SLIM3D

(Popov and Sobolev

Balance equations PEPI, 2008)

o
Momentum: L+Apgz, =0
j
DU oq.
Energy: = -
&) Dt OX,

Deformation mechanisms

s _ el . Vs - pl
g{,"_g{,f +€tj +6‘g

Elastic strain:

Plastic strain:
Mohr-Coulomb i



700

800

900

log

\\I\IIII\\\\I\\\\I\\\\I\I
1000 1100 1200 1300 1400

Temperature [K]

N,
N
\\\
N,
D) ~
N,
N,
¥,
N,
N,

Three creep processes

Diffusion creep

: E
£, =B, exp [— ﬁj

Dislocation

- i E
&y = By (z,) exp [—ﬁ]

Peietls creep

2
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P

( Kameyama et
al. 1999)



Z-Axis

Cross-scale Modeling of Seismic
Cycle

10 Min. years evolution, n(T,P,o0), static friction
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Rate and State Friction Law

T V oV’
—=u=u +aln| — [+bln| —
o H=H (V j [ L j

n
and

were:
* VV and 0 are sliding speed and contact state, respectively.
* a, b are non-dimensional empirical parameters.

* L is a characteristic sliding distance.

» The * stands for a reference value.
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Transient viscous rheology

Steady power-law dislocation creep

. =B-t"exp(—H, /RT)

Transient rheology (motivated by Karato (1998))

é=£,(L+(B-Dexp(-e)"~ /)

where:
& 55 is power-law steady state creep strain rate (lab data)
ge% is elastic strain induced by earthquake
after eq
gss is steady state viscous strain after the earthquake
,B is a constant about 10 for peridotite
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Seismic Cycle Model

Adaptive time-step gradually increasing from 40 sec at earthquake to
5 years in interseismic period, following decreasing strain rate
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Seismic Cycle Model

Adaptive time-step gradually increasing from 40 sec at earthquake to
5 years in interseismic period, following decreasing strain rate

Locking
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Time, years
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Seismic Cycle Model

Adaptive time-step gradually increasing from 40 sec at earthquake to
5 years in interseismic period, following decreasing strain rate

Locking Earthquake

log(strainrate)
-5.0

0 1000 2000 3000 4000 5000
Time, years
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Model setup

(short time scale)
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Earthquakes

Adaptive time-step algorithm: from 5 yr step gradually multiplying by 72 to
about 40 sec and back

3x10"7 —

- Mean period 370 yr

| |
0 4000 8000 12000
Time, yr

Generated earthquakes sequence
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Sumatra, Mom: 1.1e+23 Nm, Mag: 9.3

2D Moments
Sumatra, 2004

From Andreas Hoechner, GFZ

90

94

96

25

20

Moment density [N/m)]

. dens. integrated along dip [N]

Distance along trench [km]

250
x10"
®  Southern
C ® (Central
.o. ®  Northern |7
o °
L ® ... oe®e
J ° oo
\.. ...
°
. o, 0%, e’ o
e®
“ 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600



Sumatra, Mom: 1.1e+23 Nm, Mag: 9.3

2D Moments
Sumatra, 2004
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Earthquakes

Adaptive time-step algorithm: from 5 yr step gradually multiplying by 72 to

about 40 sec and back

3x10"

umatra 2004 (V

* From Andreas Hoechner, GFZ

hile 1960 (M=92) From Marcos Moreno, GFZ

N

Mean period 370 yr

| | 0 |
4000 8000 12000 16000
Time, yr

Generated earthquakes sequence



Zoom-in to earthquake

about 40 sec time-scale, M(2D)=1.8x10"", mean slip at the fault 17
m, stress drop 6 MPa, rupture penetrates to about 500°C-isotherm
depth

10%cmlyr log strain rate, 1/s 500°C X-Displacement, m

DX
6,000e+00

N =8x10"3 Pa



Zoom-in to earthquake

about 40 sec time-scale, M(2D)=1.8x10"", mean slip at the fault 17
m, stress drop 6 MPa, rupture penetrates to about 500°C-isotherm
depth

10%cmlyr log strain rate, 1/s 500°C X-Displacement, m
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Z-Axis
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Why viscosity drop?

1-5 MPa
Just before the earthquake
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Stress in the mantle wedge
changes by up to 16 times
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Z-AXis
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Z-AXis
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7 min
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Seismic-cycle tour

Mantle wedge is active




Z-AXis
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1 year
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Z-AXis

10 years

> 10 cm/yr
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Z-AXis

50 years

> 10 cm/yr
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Z-AXis

100 years

> 10 cm/yr
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Z-AXis

150 years

> 10 cm/yr
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Z-AXis

200 years

> 10 cm/yr
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Evolution of viscosity in mantle wedge

Minimum viscosity in mantle wedge, Pa.s
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Conclusions Cycle (2D)

* We have developed the model able to simulate seismic cycle
and subduction process in time scale range from rupture
(minute) to geological time (Min years)

* The model suggests that after the great (M>9) earthquake
viscosity in the mantle wedge can drop by up to 3-4 orders of
magnitude. As a result, surface displacements are controlled by
the relaxation in mantle wedge already since 1 hour after the
earthquake.

 The model is consistent with the short-time scale GPS data for
Tohoku 2011 earthquake



Maximum magnitudes



Mechanical coupling as a key
factor
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Mechanical coupling as a key
factor

Subducting plate age (Myr) 1,1980)
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Sediment Thickness in Trench

L} / \
Sediment Thickness at Trench, km %
0 1 2 = 4 5
t I I i i
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(Modified from Heuret et al, 2011)
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Dipping Angle
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Dip Angle, °

Key parameters
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dipping angle, static friction, subduction velocity)

Parameter's Sensitivity
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Effects of Parameters
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Effects of Parameters
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Effect of Subduction Velocity

9.6 —
- @ slow Vs=3.5 cmlyr
95 — - @ moderate Vs=7 cm/yr
. @ fastVs=10 cmlyr
=
< .
[
S 9.4 -
5
€054 !
£
s @ a
= [
7 o ¢
i\,/'
9.1 I ) I T I T I T ’ 1
0.01 0.02 0.03 0.04 0.05

Static Friction



Effect of Subduction Velocity
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Largest Observed Earthquakes
vs Model Predictions
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Largest Observed Earthquakes
vs Model Predictions
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Largest Observed Earthquakes
vs Model Predictions
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Effect of Subduction Velocity

W1>W2

Brittle-Ductile
Transition

Distance along the Channel
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Effect of Dipping Angle on
Seismogenic Zone Width

W1 >W2>W3>W4
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Effect of Static Friction on
Seismogenic Zone Width

0)

Distance along the Channel
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Effect of Rupture Width
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Effect of Rupture Width
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Effect of Rupture Width
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Average Velocity During 200 kyr of subduction, mm/yr

Upper Plate Strain
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Dip Angle, °

Key parameters

B Compressive Upper Plate Strain
B Neutral Upper Plate Strain

Sediment Thickness, km
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Coupling paradox

Is the idea about low mechanical coupling at
subduction zones consistent with the occurrence
there great earthquakes?

Great earthquakes may well happen within the
very weak fault zones (subduction channels) with
static friction about 0.01-0.05 due to the friction
drop of about 0.005-0.01.

What makes earthquake great is not large stress
drop, but rupturing at large area (homogeneous
channel structure, no barriers).



Conclusions

Modeling confirms that low-angle subduction (large effect)
and thick sediments (smaller effect) in subduction channel are
fundamental necessary conditions for giant earthquakes.

HIGH MECHANICAL COUPLING IS NOT REQUIRED

Modeling suggests that thick sediments in subduction channel
(=low friction) result in neutral or slightly compressive
deformation in the overriding plate for low-angle subduction
zones.

These modeling results agree well with observations for the
largest earthquakes and allow predicting largest possible
earthquakes for subduction zones.



