#### Rate-and-State Friction Law

Iskander Muldashev, Stephan Sobolev GFZ, Section 2.5 Geodynamic Modeling

## Reason for Earthquake



## Earthquake Machine



iris.edu

#### Rate-and-State Friction



#### **Steady State**

$$\mu_{ss} = \mu_0 + (a - b) \times ln\left(\frac{V}{V_0}\right)$$

#### (a-b) > 0 velocity strengthening (stable sliding)

(a-b) < 0 velocity weakening (unstable sliding)

## Simple Shear Model



## (a-b)>0 strengthening



#### (a-b)>0 (strengthening)



## (a-b)>0 (strengthening)



## (a-b)<0 (weakening)



## (a-b)<0 (weakening)



## (a-b)<0 (weakening)



#### **Ruina-Dieterich Equation**

$$\tau = \mu \times \overline{\sigma} = \left[ \mu_0 + a \times \ln\left(\frac{V}{V_0}\right) + b \times \ln\left(\frac{\theta}{\theta_0}\right) \right] \times \overline{\sigma}$$

$$\frac{d\theta}{dt} = 1 - \frac{V\theta}{D_c}$$

#### Rate-and-State Friction



#### **Effect of State Parameter**

# (a-b) > 0 velocity strengthening (stable sliding)

### (a-b) < 0 velocity weakening (potentially unstable sliding)



Frictional stability depends entirely on  $\overline{\sigma}$ ,  $\tau$ , k, the friction parameters Dc and (a-b), and is independent of base friction  $\mu_0$ .

Considering fixed stiffness k, oscillations occurs at a critical value of effective normal stress,  $\sigma_c$ , given by:

$$\sigma_c = \frac{kD_c}{-(a-b)}$$



 $\sigma > \sigma_c$  sliding is unstable  $\sigma < \sigma_c$  sliding is stable  $\sigma \approx \sigma_c$  oscillations

### **Oscillations** Mode



#### **Oscillations Mode**



#### **Oscillations Mode**



## Variation of (a-b)



## Variation of (a-b)



## Variation of (a-b)



## **Slip Distribution**



#### **Rupture in Subduction Zone**



#### **Rupture in Subduction Zone**



#### Nucleation

$$\sigma_c = \frac{kD_c}{-(a-b)}$$

The effective stiffness, k, of a crack with length L embedded in an elastic medium with shear modulus G scales as G/L ( $k = \eta G/L$ ).

$$L_c = \frac{G\eta D_c}{(b-a)\bar{\sigma}}$$

## Nucleation

$$L_c = \frac{G\eta D_c}{(b-a)\bar{\sigma}}$$

(Scholz, 1998)

- Instability occurs when the slipping patch reaches a critical size  $L_c$ .
- Also it is a minimal size of asperity to generate an earthquake.

## Nucleation



## Values and Uncertainties

 $a, b \sim 10^{-3} - 10^{-2}$ 

 $(a - b) \sim 0.004$  (in seismogenic zone)

- Varies with stress and temperature.
- Hard to model in experiment. (a-b) Granite powder Granite 0.03 0.004 0.01 0.001 -0.01 50 150 400 200 Normal stress (MPa) Temperature (°C) (Scholz, 1998)

## Values and Uncertainties

 $D_c \approx 1 - 100 \ \mu m$  in the laboratory experiments

But various attempts to model  $D_c$ , assuming that it is a property of the surface contact topography or gouge zone thickness, suggest that it may be much larger at the fault scale (up to 1m)

## Values and Uncertainties

Effective stress distribution

 $\bar{\sigma} \sim 50 MPa$ 



## Conclusons

# (a-b) > 0 velocity strengthening (stable sliding)

## (a-b) < 0 potentially velocity weakening (unstable sliding)



## Conclusions

Earthquakes occur in the unstable field but can also propagate to conditionally stable fields





### Conclusions

Nucleation size is necessary for earthquake

$$L_c = \frac{G\eta D_c}{(b-a)\bar{\sigma}}$$

## Conclusions

#### Uncertainties for friction parameters

