

ASPECT

Introduction – Tutorial – Applications

Blockkurs Fortgeschrittene Geodynamik 08.03.2016

Anthony Osei Tutu (GFZ, Sektion 2.5) Eva Bredow (GFZ, Sektion 2.5)

ASPECT

- Advanced Solver for Problems in Earth's Convection -

Codes in Geodynamics

- Some widely used codes
- Almost no codes use adaptively refined meshes
- Almost all codes use lower order elements
- Most codes use "simple" solvers
- No code has been "designed" with a view to
 - extensibility
 - maintainability
 - correctness

Requirements as "community code":

- solve problems of interest (to geodynamicists)
- well tested
- modern numerical methods
- easy to extend
- freely available = open code

Numerical methods

- Mesh adaptation
- Accurate discretizations (choice of finite element for velocity and pressure + nonlinear artificial diffusion for temperature stabilization)
- Efficient linear solvers (preconditioner + algebraic multigrid)
- Parallelization of all the steps above
- Modularity of the code

Credits

Website and manual: <u>https://aspect.dealii.org/</u>

Developers & contributors: Wolfgang Bangerth, Timo Heister, René Gaßmöller, Juliane Dannberg and many more

Publication: < Kronbichler et al. 2012 GJI ser Manual

Advanced Solver for Problems in Earth's Convection

Setup of the numerical model **CIG** COMPUTATIONAL GEODYNAMICS

- Model key components:
 - 1. The rules (e.g. equations) for the model
 - 2. The discretization of the model
 - 3. Model parameters
 - 4. Dependent and independent variables
 - 5. The initial state of the model
 - 6. The boundary conditions
- Look at the parameter file: cd ASPECT_TUTORIAL/models/ gedit tutorial.prm

ASPECT - General

• General parameters:

u	velocity	$\frac{m}{s}$
p	pressure	Pa
T	temperature	Κ
$\varepsilon(\mathbf{u})$	strain rate	$\frac{1}{s}$
η	viscosity	$Pa \cdot s$

ρ	density	$\frac{kg}{m^3}$
g	gravity	$\frac{m}{s^2}$
C_p	specific heat capacity	$rac{J}{kg\cdot K}$
k	thermal conductivity	$\frac{W}{m \cdot K}$
Н	intrinsic specific heat production	$\frac{W}{kq}$

u	velocity	$\frac{m}{s}$
p	pressure	Pa
T	temperature	Κ
$\varepsilon(\mathbf{u})$	strain rate	$\frac{1}{s}$
η	viscosity	$Pa \cdot s$

ρ	density	$\frac{kg}{m^3}$
g	gravity	$\frac{m}{s^2}$
C_p	specific heat capacity	$\frac{J}{kg \cdot K}$
k	thermal conductivity	$\frac{W}{m \cdot K}$
H	intrinsic specific heat production	$\frac{W}{kg}$

$$-\nabla \cdot \left[2\eta \left(\varepsilon(\mathbf{u}) - \frac{1}{3} (\nabla \cdot \mathbf{u}) \mathbf{1} \right) \right] + \nabla p = \rho \mathbf{g} \qquad \text{Momentum equation} \\ \nabla \cdot (\rho \mathbf{u}) = 0 \qquad \text{Conservation of mass} \\ \rho C_p \left(\frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T \right) - \nabla \cdot k \nabla T = \rho H \qquad \text{Conservation of energy} \\ \text{Change of energy over time} \qquad \text{Advection} \qquad \text{Heat conduction} \qquad + 2\eta \left(\varepsilon(\mathbf{u}) - \frac{1}{3} (\nabla \cdot \mathbf{u}) \mathbf{1} \right) : \left(\varepsilon(\mathbf{u}) - \frac{1}{3} (\nabla \cdot \mathbf{u}) \mathbf{1} \right) \\ - \frac{\partial \rho}{\partial T} T \mathbf{u} \cdot \mathbf{g} \qquad \text{Shear heating} \\ \text{Radiogenic heating} \qquad + \rho T \cdot \Delta S \frac{DX}{Dt} \qquad \text{Adiabatic heating} \quad \frac{\partial \rho}{\partial T} = -\rho \alpha \\ \text{Iatent heat (phase changes)} \end{cases}$$

11

 $-\frac{1}{3}(\nabla \cdot \mathbf{u})\mathbf{1}$

$$7 \cdot \left[2\eta \left(\varepsilon(\mathbf{u}) - \frac{1}{3}(\nabla \cdot \mathbf{u})\mathbf{1}\right)\right] + \nabla p = \rho \mathbf{g} \qquad \text{Momentum equation} \\ \nabla \cdot (\rho \mathbf{u}) = 0 \qquad \text{Conservation of mass} \\ \rho C_p \left(\frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T\right) - \nabla \cdot k \nabla T = \rho H \qquad \text{Conservation of energy} \\ + 2\eta \left(\varepsilon(\mathbf{u}) - \frac{1}{3}(\nabla \cdot \mathbf{u})\mathbf{1}\right) : \left(\varepsilon(\mathbf{u}) - \frac{1}{3}(\nabla \cdot \mathbf{u})\mathbf{1} - \frac{\partial \rho}{\partial T}T\mathbf{u} \cdot \mathbf{g} \right) + \rho T \cdot \Delta S \frac{DX}{Dt} \\ \frac{\partial c_i}{\partial t} + \mathbf{u} \cdot \nabla c_i = 0 \qquad \text{Advection of compositional fields} \\ \text{Field method (instead of tracer method)} \end{cases}$$

Geometry model

ASPECT - Geometry

- 2D box = rectangle, 3D box = cuboid
- Depth of the box = 3×10^6 m
- Width of the box = 4.2×10^6 m
- Make sure that various units fit together!

21 subsection Geometry model 22 set Model name = box 23 subsection Box 24 set X extent = 4.2e625 set Y extent = 3e626 end 27 end

2D Model

4200 km

ASPECT - Discretization

REFINE=3 (8x8 cells)

REFINE=4 (16x16 cells)

REFINE=5 (32x32 cells)

34 35 36	subsect se	ion Mesh refinement et Initial global refinement = REFINE	mesh, for this tutorial: REFINE = 3 or 4 or 5
37	Se	et lime steps between mesh refinement = 0	
30	enu	turr	ned off \rightarrow the mesh

turned off → the mesh does not change during the simulation

"grid spacing" of the

Mesh adaptation

Material model

Densities for example from seismic tomography velocities

ASPECT - Model Parameters

- Use a built in material model or implement your own
- Several parameters which control reference density, temperature dependence of viscosity, etc.

Default Values:

$$\rho_0 = 3300, g = 9.8, \alpha = 2 \times 10^{-5}, \Delta T = (3600 - 273) = 3327$$

 $D = 3 \times 10^6, k = 4.7, c_p = 1250, \kappa = \frac{k}{\rho_0 c_p} = 1.1394 \times 10^{-6}$

44	subsection Gravity model	51	subsection Material model
45	set Model name = vertical	52	set Model name = simple
46	subsection Vertical	53	subsection Simple model
47	set Magnitude = 9.8	54	set Viscosity = VISCOSITY
48	end	55	end
49	end	56	end

Modularity

Scaling

CIE COMPUTATIONAL INFRASTRUCTURE for GEODYNAMICS

Scales almost linearly = excellent parallelization!

Exercise 1 Convection in a 2D Box

Nusselt-Rayleigh Relationship & Visualization with ParaView

Nusselt-Rayleigh Relationship CIG COMPUTATI

Convection in a 2D Box (free slip boundaries)

Initial temperature and velocity field

Final temperature and velocity field

Nusselt-Rayleigh Relationship CIG

 In this tutorial, you control the Rayleigh number Ra with the viscosity η:

 $Ra = \frac{\rho_0 g \alpha \Delta T D^3}{\eta \kappa}$

Ra = dimensionless parameter, indicates the presence and strength of convection in the mantle

$$\eta = \frac{\rho_0 g \alpha \Delta T D^3}{\kappa R a}$$

 $=\frac{5.0993\times10^{28}}{Ra}$

- ρ_0 = reference density
- g = gravity acceleration
- α = thermal expansion coefficient
- T = temperature
- D = depth
- κ = thermal diffusivity

Nusselt-Rayleigh Relationship CIG COMPUTATIONAL

 Nusselt number Nu = the ratio of convective to conductive heat transfer,

related to the surface heat flux

Questions

- If the Rayleigh number goes up, how does the Nusselt number change?
- How does the mesh resolution affect the accuracy of these results?

Nusselt-Rayleigh Relationship CIG COMPUTATIONAL for GEODYNAMICS

		Ra=4,000	Ra=20,000	Ra=100,000	Ra=500,000
E	nd Time	1e12	2e11	3e10	5e9
V	/iscosity	1.275E25	2.550E24	5.099E23	1.020E23
R	efine = 3	(???)	(???)	(???)	(???)
R	efine = 4	(???)	(???)	(???)	(???)
	1,00E+00				
flux ber)	8,00E-01				
heat num	6,00E-01			F	Refinement=3
- 10-300,4 get get				——————————————————————————————————————	Refinement=4
Surf (Nus	2,00E-01			— F	Refinement=5
	0,00E+00		1		
		Ra=/le3 Ra=2	0e∕l Ra=1e5	Ra=5e5	

Nusselt-Rayleigh Relationship CIG

- 1. Modify the refinement, end time, and Rayleigh number in tutorial.prm
- 2. Run ASPECT with the tutorial parameter file aspect tutorial.prm
- 3. Look at the log gedit output/log.txt
- 4. Look at the statistics output gedit output/statistics
- Plot the results in gnuplot (time vs. heat flux) 5. gnuplot plot "output/statistics" using 2:20 with lines;

Just a hint: To stop the calculations, press Ctrl + C

Nusselt-Rayleigh Relationship CIG

	Ra=4,000	Ra=20,000	Ra=100,000	Ra=500,000
End Time	1e12	2e11	3e10	5e9
Viscosity	1.275E25	2.550E24	5.099E23	1.020E23
Refine = 3	7.14e4	1.20e5	1.74e5	1.61e5
Refine = 4	7.54e4	1.22e5	1.94e5	2.98e5
Refine = 5	7.72e4	1.28e5	2.02e5	3.19e5

Nusselt-Rayleigh Relationship CIG COMPUTATIONAL

 If the Rayleigh number goes up, how does the Nusselt number change?
 if Ra goes up → Nu goes up

 How does the mesh resolution affect the accuracy of these results?
 if mesh refinement is too low, the result for high Ra is no longer accurate!

ParaView

program for visualizationof large data sets

v 4.0.1 64-bit		🄃 🗈 💌 🜒 12:58 PM 🔱
	🚉 🛯 📣 🕨 🕪 🖬 🛱 Time: O	
	🔹 Representation 💌 🔀 🕄 📫	
	2 😒 词 🗖 🔐 🥙 🕼 🕏	
obboobboobbo Pipeline Browser (bboobboobboo 🗐 🗙	Layout #1 × +	
Properties Information	, ₩, ₩, 3D [16] (Δ,] Δ,] Φ, [4] [4] [4] [4] [4] [4] [4] [4] [4] [4]	
Search		
Properties		
🗖 Display		
	ř z_x	

- Aspect creates the file solution.pvd
- choose "Open" from the
 File menu
- The file is in ASPECT_TUTORIAL/models/output/

Look in:	/home/cig/tutorial/aspect/output/	> ^	
i Home	Filename		
iii output			
	File name: solution xdmf	ОК	_
	The nume.		

- the file contains the variables temperature (T), pressure (p), and velocity
- click "Apply" + Select "T" in the toolbar to show the temperature field

 change the time in the top toolbar + click "Play"

Previous Next Frame Frame Loop + 1.90612e+10 Time: 69 **First** Play/ Simulation Last Time step Frame number Frame Pause Time

Frame 231

- Open the file particle.pvd and click "Apply" to see the tracer particles
- Click "play" to see how material is flowing with the tracer particles

Change the coloring scheme to "Solid Color"

Temperature field with tracer particles

Exercise 2 Convection in a 2D spherical shell

Adaptive mesh refinement & Spherical shell geometry & Visualization

Setup: Convection in a Shell

- Geometry: Quarter of a spherical shell
- Constant initial temperature with a perturbation to start the upwelling

Numerical Challenges

Problems with large number of DOFs

Questions:

- How does the flow field change with varying the resolution?
- How does the runtime change with the adaptive refinement compared to global refinement?

Material model

set Adiabatic surface temp	perature	=	1600	~	
<pre>subsection Material model set Model name = simple subsection Simple model set Thermal expansion set Viscosity set Thermal viscosity set Reference temperat end end</pre>	coefficient exponent ture	=	2e-5 3e21 3 1600		These should be the same
de	Temperature- ependent viscosi	ity]		

Geometry & gravity model


```
subsection Geometry model
  set Model name = spherical shell
  subsection Spherical shell
    set Inner radius = 3481000
                                         The gravity model has to
    set Outer radius = 6336000
                                        be changed together with
    set Opening angle = 90
                                             the geometry
  end
end
subsection Gravity model
  set Model name = radial earth-like
end
```

Initial conditions

Boundary conditions

subsection Model settings		
set Zero velocity boundary indicators	=	0
set Tangential velocity boundary indicators	=	1, 2, 3
set Prescribed velocity boundary indicators	=	
set Fixed temperature boundary indicators	=	0, 1
set Include shear heating	=	false
set Include adiabatic heating	=	false
end		

Boundary conditions

Exactly the same as:

```
subsection Model settings
set Zero velocity boundary indicators = inner
set Tangential velocity boundary indicators =
outer, left, right
set Prescribed velocity boundary indicators =
set Fixed temperature boundary indicators = inner, outer
set Include shear heating = false
end
```

Mesh refinement

This is what needs to be changed: Group 1: 3, Group 2: 4, Group 3: 5

Tasks

- Modify the spherical_shell.prm file to use your assigned refinement number gedit spherical_shell.prm
- Run the simulation aspect spherical_shell.prm or in parallel mpirun –np 2 aspect spherical_shell.prm
- Visualize the results with Paraview ASPECT_TUTORIAL/models/spherical-shell/ ouput.pvd

Just a hint: To stop the calculations, press Ctrl + C

Time snapshots of models with different resolution

Results

How does the flow field change with varying the resolution?

Results

How does the runtime change with the adaptive refinement compared to global refinement?

Refinement 3 Refinement 4 Refinement 5 Refinement 6