
Comp. Geodynamics March 1, 2016

Introduction to MATLAB

Matlab is a commercial software that provides a computing
environment that allows for sophisticated ways of developing and
debugging computer code, executing programs, and visualizing the
output. Matlab is also a computer language (sort of mix between
C and Fortran) and this exercise for you to work through is mainly
concerned with some of the language aspects that we will use
extensively throughout the course. Please read through the more
comprehensive and verbose Matlab Intro (available at the course
website) and familiarize yourself with Matlab.

All the machines in this CIP Pool have Matlab installed (under
Linux). After starting up the program, you will be presented with an
interactive window where you can type in commands as indicated
below.

MATLAB - course notes 1

Comp. Geodynamics March 1, 2016

Please also familiarize yourself with the other components of the
development environment, such as the built-in editor for Matlab
programs, which are called “m-files”, so that you can be more efficient
in writing and debugging codes. There are numerous Matlab-provided
help resources accessible through the environment, including video
tutorials, access to the help pages, along with extensive documentation
on the web.

MATLAB is entirely vector or linear algebra based. It is therefore
useful to briefly review some basic linear algebra.

MATLAB - course notes 2

Comp. Geodynamics March 1, 2016

1. Useful linear algebra

Let’s define a vector b as:

b = (5 10 17) → b = [5 10 17]

and a 3 by 2 matrix D as:

D =

1 2
4 3
5 6

 → D = [1 2; 4 3; 5 6]

The transpose (denoted with T) is given by: → type: D′ and b′

D
T =

(

1 4 5
2 3 6

)

b
T =

5
10
17

MATLAB - course notes 3

Comp. Geodynamics March 1, 2016

Matrix-vector multiplication:

D
T
b

T =

(

1 4 5
2 3 6

)

5
10
17

 =

(

130
142

)

Vector-vector multiplication:

bb
T =

(

5 10 17
)

5
10
17

 =
(

414
)

Matrix-matrix multiplication:

D
T
D =

(

1 4 5
2 3 6

)

1 2
4 3
5 6

 =

(

42 44
44 49

)

MATLAB - course notes 4

Comp. Geodynamics March 1, 2016

In numerical modeling, or in geophysical inverse problems, we
frequently end up with a linear system of equations of the form:

A · x = rhs

where A is a n×m matrix and rhs is a n× 1 vector whose coefficients
are both known, and x is a m × 1 vector with unknown coefficients.

If we take A = D and rhs = b
T , x becomes (check !):

x =

(

1
2

)

MATLAB - course notes 5

Comp. Geodynamics March 1, 2016

Exploring MATLAB
To start the program on the Linux machines type matlab at the UNIX
prompt. The MATLAB environment, including the command window, is
starting.

1. Type 2 + 3 You’ll get the answer.
Type 2 + 3 ∗ 9 + 5 ˆ 2

2. Type the following commands and note how Matlab deals with
vectors:

» x=3
» x=3;
» x
» y=xˆ2
» x=[2,5.6]
» y=2*x;
» y=xˆ2

MATLAB - course notes 6

Comp. Geodynamics March 1, 2016

» y=x.ˆ2
» y=[3,4]
» x*y’
» x.*y
» pi
» a=x*pi

3. Type demo and explore some examples. Also note the introductory
tutorial videos you might want to watch later.

4. Type help. You see a list of all help functions. Type ’help
log10’ to get information about the log10 command. Type ’help
logTAB’ where logTAB means typing log and then pressing the
TAB key without adding a white space. Notice the command
completion selection within the Matlab shell. Note also that you can
use the Up ⇑ and Down ⇓ arrows to retrieve previous commands
and navigate through your command history, and p⇑ will bring up
the last command line that started with a ’p’.

MATLAB - course notes 7

Comp. Geodynamics March 1, 2016

5. Create an array of x-coordinates

» dx=2
» x=[0:dx:10]

6. and of y-coordinates as a function of x

» y=x.ˆ2 + exp(x/2)

7. and plot it:

» plot(x,y)

8. Make a plot of a parametric function (what is it ?):

» t=0:.1:2*pi
» x=sin(t); y=cos(t); plot(x,y,’o-’)
» xlabel(’x’)
» ylabel(’y’)
» axis image, title(’fun with plotting’)

MATLAB - course notes 8

Comp. Geodynamics March 1, 2016

Make an ellipse out of it with short radius 1 and long radius 2. Also
change the color of the curve to red.

Now, create x and y arrays, for example x=[1:5]; y=x;

9. Play with the matrix product of x and y. Typing

» x.*y

performs an element by element product of the two vectors
(note the dot)

» x’

returns the transpose

» x*y’

the “dot” or scalar product of the two vectors that returns a scalar

MATLAB - course notes 9

Comp. Geodynamics March 1, 2016

» x’*y

the dyadic product that returns a matrix.
Some commands (try them)

» ones(1,5); zeros(6,1)
» length(x)
» whos

10. Create 2D matrices.
A useful function is meshgrid, which creates 2D arrays:

» [x2d,y2d]=meshgrid(0:.1:2*pi,1:.1:2*pi)

You can get the size of an array with:

» size(x2d)

11. Plotting of the function sin(x2d.*y2d):

MATLAB - course notes 10

Comp. Geodynamics March 1, 2016

» z2d=sin(x2d.*y2d)
» surf(x2d,y2d,z2d)
» mesh(x2d,y2d,z2d)
» contour(x2d,y2d,z2d), colorbar
» contourf(x2d,y2d,z2d), colorbar

Some cool stuff (1)

» [x2d,y2d,z2d]=peaks(30);
» surf(x2d,y2d,z2d); shading interp
» light; lighting phong

Some cool stuff (2): perform the example given at the end of

» help coneplot;

Other useful commands:

clf – clear current active figure
close all – close all figure windows.

MATLAB - course notes 11

Comp. Geodynamics March 1, 2016

MATLAB scripting & loops

By now you must be tired from typing all those commands all the time.
Luckily there is a Matlab script language which basically allows you to
type the command in a text editor of your choice. Matlab scripts are
text files that end with the suffix “.m”.

12. Use the built in editor (or another text editor e.g. vi) and create a file
“mysurf.m”.

13. Type the plotting commands from the last section in the text file.
A good programming convention is to start the script with clear,
which clears the memory of MATLAB.
Another good programming practice is to put lots of comments
inside a Matlab script. A comment can be placed anywhere after
%, e.g. % this is my first Matlab script.

MATLAB - course notes 12

Comp. Geodynamics March 1, 2016

14. Start the script from within MATLAB by going to the directory where
the text file is saved. Type mysurf from within MATLAB and you
should see the plot. Alternatively, within the Matlab editor, you
can press F-5 to run. Also note that there are various debugging
features in the editor that are very helpful, such as real-time syntax
checking and addition of breakpoints.

15. Create an array na=100; a=sin(5*[1:na]/na); plot(a);
Ask instructions on using “for”:

» help for

16. Compute the sum of an array

» mysum=0; for i=1:length(a), mysum=mysum+a(i); end;
» mysum

17. Compare the result with the MATLAB built-in function sum

» sum(a)

MATLAB - course notes 13

Comp. Geodynamics March 1, 2016

18. Exercise: Create an x-coordinate array:

» dx=0.01; y=cos([0:dx:10])

Compute the integral of y=cos(x) on the x-interval 0 < x < 10.
Use sum(y) and write a Matlab script. Compare it with sin(10),
the analytical solution.

19. Create a number of sedimentary layers with variable thickness

» thickness=rand(1,10); plot(thickness)

20. Compute the depth of the interface between different layers

» depth(1)=0; for i=2:length(thickness),
» depth(i)=depth(i-1)+thickness(i); end; plot(depth)

21. Compare the results with the built-in Matlab function cumsum

MATLAB - course notes 14

Comp. Geodynamics March 1, 2016

» bednumber=1:length(depth)
» plot(bednumber,depth,bednumber,cumsum(thickness))

22. What causes the discrepancy ? Try to remove it, ask help cumsum

23. Ask help if. Find maxima of the above array thickness, and
compare it with the built-in function max(thickness)

24. Ask help find. Find which bed has the maximum thickness

» find(thickness==max(thickness))

25. Find the number of beds with a maximum thickness of less than 0.5.

26. Exercise: Reproduce the linear algebra exercises in the beginnig
of this document. Hint: If you want to solve the linear equations
Ax = Rhs for x, you can use the backslash operator: x = A\Rhs

MATLAB - course notes 15

Comp. Geodynamics March 1, 2016

Functions & Structures

Matlab allows you to declare functions that return a value and use m-
files to store those functions. If you save

function xs=mysqr(x)
xs=x.ˆ2;

as mysqr.m in your working directory, you can the use your function
just like a regular Matlab command:

» y=[2,3,4]
» mysqr(y);

Matlab stores all regular variables as arrays of size 1 × 1 which are by
default of type “double”. To write more efficient programs, you might at
times consider declaring integers actually as integers.

More importantly, Matlab affords you with the possibility to collect
variables that logically belong together into a “structure”. This variable

MATLAB - course notes 16

Comp. Geodynamics March 1, 2016

will hold as many sub-variables as you want which are each addressed
with a “.”. For example, if dealing with eartquakes, you might want to
use a structure like

quake.lon=100.1; quake.lat=120.1; quake.depth=15;

The benefit of this is that you can now, for example, pass “quake” to
functions and the function will locally know that quake actually has the
components lon, lat, and depth which can be addressed within the
subroutine.

Online reference

R. L. Spencer and M. Ware (2008). Introduction to Matlab.
Brigham Young University, available online, accessed 07/2008.
[see course website at
http://www.dynamicearth.de/compgeo/Tutorial/Day1/mlintro.pdf]

MATLAB - course notes 17

