Lecture 5. Rifting, Continental break-up, Transform faults

How to break a continent?

- Effect of magmas and Large Igneous Provinces
- Effect of oblique rifting
- Continental transform faults
 - > What caused Dead Sea transform?
 - San Andreas Fault System

How to break continent?

Effect of magma-filled dikes

Buck (2006)

Effect of magma-filled dikes

It works if lithosphere is first thinned to about 75 km

Buck (2006)

Lithospheric thinning above mantle plume

Sobolev et al. Nature 2011

Effect of oblique rifting

Brune, Popov, Sobolev JGR 2012

Effect of oblique rifting

Brune, Popov, Sobolev JGR 2012

Effect of oblique rifting

$$F_{strike-slip} = au_{yield}L_z$$

$$F_{extension} = \frac{r_{yield}L_z}{\sqrt{\frac{1}{3}(\nu^2 - \nu + 1)}}.$$

 $F_{extension} = 2\tau_{yield}L_z.$

Heine and Brune, Geology, 2014

Heine and Brune, Geology, 2014

Heine and Brune, Geology, 2014

Conclusion

To break a continent are required:

(1) extensional deviatoric stresses (internal, from ridge push or subduction zones roll-back) and (2) lithospheric weakening

Large Igneous Provinces are optimal for lithospheric weakening, as they may both thin lithosphere and generate magma-filled dikes.

Intensive strike-slip deformation is also helpful

Continental transform faults (case Dead Sea Transform)

Continental Transform Faults

Regional setting

With the surface heat flow of 50-60 mW/m2, the DST is the coldest continental transform boundary

Lithospheric thickness and magmatism

Magmatism at 30-0 Ma

Lithosphere-asthenosphere boundary (LAB) from seismic data

Conclusion

Lithosphere around DST was thinned in the past and related high heat flow had not enough time to reach the surface

Model setup

Modeling technique LAPEX 3D combining FE and FD (Petrunin and Sobolev, Geology, 2006, PEPI, 2008)

Initial lithospheric structure:

Model setup

Modeling results: role of the thermal erosion of the Applied force is 1.6e13N/m

Possible scenario

Plumes at 25-35 Ma

Lithospheric erosion 20-30 Ma

Localization of the DST 15-17 Ma

Lithospheric erosion has triggered the DST

Chang and Van der Lee, EPSL, 2011

San Andreas Fault System

San Andreas Fault System

USGS Professional Paper 1515

24 Ma: Shortly after Initiation of Strike-Slip

(animation by T. Atwater)

Questions addressed

Why the locus of deformation in SAFS migrates landwards with time?

How differently would evolve SAFS with "strong" and "weak" major faults? Why the locus of deformation in SAFS migrates landwards with time?

Extended 2D Model Setup (South view)

3D Model Setup (view from the North)

Popov, Sobolev, Zoback, G3 2012

Physical background

Balance equations

Momentum:
$$\frac{\partial \sigma_{ij}}{\partial x_j} + \Delta \rho g \ z_i = 0$$

Energy: $\frac{DU}{Dt} = -\frac{\partial q_i}{\partial x_i} + r$

Deformation mechanisms

 $\dot{\varepsilon}_{ij} = \dot{\varepsilon}_{ij}^{el} + \dot{\varepsilon}_{ij}^{vs} + \dot{\varepsilon}_{ij}^{pl}$ Elastic strain: $\dot{\varepsilon}_{ij}^{el} = \frac{1}{2G} \hat{\tau}_{ij}$ Viscous strain: $\dot{\varepsilon}_{ij}^{vs} = \frac{1}{2\eta_{eff}} \tau_{ij}$ Plastic strain: $\dot{\varepsilon}_{ij}^{pl} = \dot{\gamma} \frac{\partial Q}{\partial \tau_{ij}}$

Popov and Sobolev (2008)

Numerical background

Discretization by Finite Element Method

Arbitrary Lagrangian-Eulerian kinematical formulation

Free surface effects (erosion, sedimentation)

Fast implicit time stepping + Newton-Raphson solver

 $u_{k+1} = u_k - K_k^{-1} r_k$ r - Residual Vector $K = \frac{\partial r}{\partial \Delta u} - \text{Tangent Matrix}$

Remapping of entire fields by Particle-In-Cell technique

Popov and Sobolev (2008)

"Strong" and "weak" faults models

"Strong faults" model: the friction coefficient decreases only slightly (from 0.6 to 0.3) with increasing plastic strain

"Weak faults" model: the friction coefficient decreases drastically (from 0.6 to 0.07) with increasing plastic strain

Popov, Sobolev, Zoback, G3 2012

3D Model (slab window cooling)

In 3D fault doesn't jump due to the slab window cooling. The reason is along-strike mechanical interaction (transpression) inhibiting fault jumping. Therefore new explanation is required

3D Model Setup with heterogeniety (at 12-15 MA)

Popov, Sobolev, Zoback, G3 2012

250km

Qualitative comparison of basic fault features

Modeled surface heat flow

"Weak faults" versus "strong faults" model

Weak-faults model

Strong-faults model

Major faults in SAFS must be weak!

Conclusions for SAFS

Present day structure and landward motion of SAFS is controlled by kinematic boundary conditions and lithospheric heterogeneity, including captured Monterray microplate

Major faults at SAFS must be "week"