L ecture 2. How to model:
Numerical methods

Outline

* Brief overview and comparison of methods
« FEM LAPEX

« FEM SLIM3D

» Petrophysical modeling

» Supplementary: detalls for SLIM3D
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Boundary conditions



General case

Boundary value problem: Lu=f,

were L is differential operator in space on unknown function u
(like 02u/ 0x?+ a2u/ dy? ) and f(x,y) is known function

Function u(x,y) is defined in the domain D with the boundary S

Dirichlet b. condition: u(x,yeS)=f1

Neumann b. condition: du/ dn (x,yeS)=f2— condition for flux




Boundary conditions

Kinematic boundary conditions

Dynamic boundary conditions:
Free surface
Free slip



Numerical methods



According to the type of parameterization in time:
Explicit, Implicit

According to the type of parameterization in space:
FDM, FEM, FVM, SM, BEM etc.

According to how mesh changes (if) within a
deforming body:

Lagrangian, Eulerian, Arbitrary Lagrangian
Eulerian (ALE)



Brief Comparison of Methods

Finite Difference Method
(FDM) :

FDM approximates an
operator (e.g., the
derivative)

Finite Element Method
(FEM) :

FEM uses exact operators
but approximates the
solution basis functions.



FD Staggered grid




Finite Elements
Tetrahedron




Finite Elements

Non-uniform
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Interpolating Functions
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Brief Comparison of Methods

Spectral Methods (SM):

Spectral methods use
global basis functions to
approximate a solution
across the entire
domain.

Finite Element Methods
(FEM):

FEM use compact basis
functions to approximate
a solution on individual
elements.



Explicit vrs. Implicit

d—XzF(X,t)

dt




Explicit vrs. Implicit

d—XzF(X,t)

dt

Should be:

M:F(X(HAUZ),HM/Z)

At




Explicit vrs. Implicit

d—XzF(X,t)

dt

Explicit approximation:

XE+AY =X _ v o).0)

At



Explicit vrs. Implicit

d—sz(X,t)

dt

Explicit approximation:
X(t+At) = X(t)+ F(X(t),1))At




Modified FLAC = LAPEX
(Babeyko et al, EPSL2002)

Dynamic relaxation:




Explicit finite element method




Markers track material and history properties
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Benchmark: Rayleigh-Taylor instability
van Keken et al. (1997)
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Sand-box benchmark movie

Movie attached
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Sand-box benchmark movie

Movie attached




2D

models Vs =0, 8/8x3:0, G,;=C,,=0

2.5D
models

V, #0, 8/0%,=0, 6,20

3D-

models 010X #0, |0/0X,|<<|0I0OX, ,|

Fully 3D

Nno restrictions
models

V- velocity vector component, G;; - stress tensor component




Simplified 3D concept
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Explicit method vs. implicit

« Advantages

— Easy to implement, small computational efforts per
time step.

— No global matrices. Low memory requirements.

— Even highly nonlinear constitutive laws are always
followed in a valid physical way and without additional
iterations.

— Straightforward way to add new effects (melting,
shear heating, . .. .)

— Easy to parallelize.

« Disadvantages
— Small technical time-step (order of a year)



Implicit ALE FEM SLIM3D
(Popov and Sobolev, 2008)



Physical background

Balance equations

Momentum:

Energy:

Viscous strain: &

Plastic strain: &
Mohr-Coulomb

Popov and Sobolev (2008)



Numerical background

Discretization by Arbitrary Lagrangian-Eulerian
Finite Element Method kinematical formulation

Free surface effects (erosion, sedimentation) \:I; y

Boundary fluxes in asthenosphere

Fast implicit time stepping
+ Newton-Raphson solver

U, =U — Ki I Remapping of

r — Residual Vector entire fields by
o _ Particle-In-Cell

K= A0 Tangent Matrix technique

Popov and Sobolev (2008)



Numerical benchmarks
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Movie attached Numerical benchmarks
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Movie attached

COMPRESSION

Numerical benchmarks
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Numerical benchmarks

Movie attached

Frame 001 | 05 Dec 2007 | 3-AXIAL EXPERIMENT




Numerical benchmarks

Movie attached

Frame 001 | 05 Dec 2007 | 3-AXIAL EXPERIMENT




Numerical benchmarks

Movie attached

Frame 001 | 05 Dec 2007 | 3-AXIAL EXPERIMENT




Solving Stokes equations with code Rhea

(adaptive mesh refinement similar to ASPECT)

temperature
1.0 -

0.7%

stress

Burstedde et al.,2008-2010



Mesh refinement: octree discretization




Solving Stokes equations with code Rhea
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Open codes



Available from CIG ( )

CitComCuU. Afinite element E parallel code capable of modelling thermo-chemical
convection in a 3-D domain appropriate for convection within the Earth’s mantle.
Developed from CitCom (Moresi and Solomatov, 1995; Moresi et al., 1996).

CitComS.A finite element E code designed to solve thermal convection problems
relevant to Earth’s mantle in 3-D spherical geometry, developed from CitCom by
Zhong et al.(2000).

Ellipsis3D. A 3-D particle-in-cell E finite element solid modelling code for
viscoelastoplastic materials, as described in O’Neill et al. (2006).

Gale. An Arbitrary Lagrangian Eulerian (ALE) code that solves problems related to
orogenesis, rifting, and subduction with coupling to surface erosion models. This
is an application of the Underworld platform listed below.

PyLith . Afinite element code for the solution of viscoelastic/ plastic deformation that
was designed for small-strain lithospheric modeling problems.

SNAC is a L explicit finite difference code for modelling a finitely deforming elasto-
visco-plastic solid in 3D.

Available from http://milamin.org/.

MILAMIN. A finite element method implementation in MATLAB that is capable of
modelling viscous flow with large number of degrees of freedom on a normal
computer Dabrowski et al. (2008).


http://www.geodynamics.org/

Open code Aspect

COMPUTATIONAL INFRASTRUCTURE FOR GEODYNAMICS (CIG)

Advanced Solver for Problems in Earth’s ConvecTion

User Manual
Version 1

January 23, 20

geodynamics.org




Full set of equations
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Petrophysical modeling



Goals of the petrophysical modeling

To establish link between rock composition and its physical
properties.

Direct problems:
prediction of the density and seismic structure (also
anisotropic)
Incorporation in the thermomechanical modeling

Inverse problem:
Interpretation of seismic velocities in terms of
composition



Petrophysical modeling

Internally-consistent dataset of thermodynamic Gibbs free energy minimization algorithm
properties of minerals and solid solutions

~

SiO,
Al,O; . . 5
Equilibrium mineralogical composition of a rock
Fezog given chemical composition and PT-conditions
MgO + (PT)
CaO 1
FeO
NaZO Density and elastic properties

optionally with cracks and anisotropy
K,O



Gibbs energy

The Gibbs free energy of a multicomponent system is given by
G = Z Teg - Jg,
i

where n; and p; are the number of moles and chemical potential of substance ¢
(end-member of solid solution or mineral of constant composition). The chemical
potential y; is defined by

i = (P, T) + RT In a;,

where ¢ is the standard chemical potential, R is the gas constant and a; is
the activity (for minerals of constant composition a; = 1). In solid systems the
following simplified relations for standard potentials can be used (Wood (1987)):

p2(P, T) = H (1000) + ¢, ;(1000) - (T — 1000) — T - (5;(1000)
+C,; - In(T/1000)) + Vi(1,298) - (1 + cx; - (T — 298) + B3; - P/2) - P,

where Hif (10003, S;(1000) and ¢, ; (1000) are the standard enthalpy, entropy and
heat capacity at 7' = 1000 K and P =1 bar, V;(1,298) is the molar volume at
T =298 K and P =1 bar and «;, 3; are the thermal expansion coefficient and
compressibility, respectively.




Solid solutions model

RTlnai = RTIH.’L‘@ + RTln’}f?;.

Here z; is the molar fraction of end-member 1 in solid solution, ~; is its activity
coefficient. For plagioclase we accept an ideal contribution according to the Al-
avoidance model by Kerrick and Darken (1975).

Non-ideal contributions to the activity can be expressed through binary inter-
actions according to Bertrand ef al. (1983):

RTIn~; = Z(‘Ei + ) - (RTlnq,:_'j +(1 =2 — zj) - AGY;
i
— Z Z(ij + ) - AGY,
J k>3

where

— 4 iy 4 %
AGH =z - RTInvy? +z; - RT'In~y/,




Density P-T diagram for average gabbro composition

Gabbro {Densityl)
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Supplement: details for FEM SLIM3D
(Popov and Sobolev, PEPI, 2008)



Finite element discretization (SLIM3D)

Interpolation and shape functions
|
= ()=N"()", N (EnC)=—(1+E% )(1+n" )1+ C
8
Discrete equilibrium equation
= | ob'dQ = N'pgdQ+| N'Tdr*, b'=grad[N]
Uniform gradient vectors + stabilization

ée | p"dQ, b'xb"+£0.b" 413 b" +( 6,b"
5 €

b’ =

Internal force vector (reduced integration)
1

f" = AfEI{ZQ@s ' ibA (agvngv Co )+ QGGEA}
0-1

External force vector (gravity and Winkler)

+1+1

ext E 1 e
f :AZI{SQ pg+JJpN‘4 0. X% 0, X d@dn}
~1-1




Time discretization
and nonlinear solution (SLIM3D)

Time discretization
0.T]1=U " [t..t,.] Ar=t,, -1,

Displacement increment (major solution variable)
* Au = Xn+l o Xn

Incremental stress update (strain driven problem)

* n+1<_@(o-n’ All At )
Nonlinear residual equation

=) L (Au, tn+1) £ (A“» tn+l) £ (Au, tn+1) 0
Taylor series expansion of the residual equation
= r+Kdou+0 (éiu2 ): 0, |K =0, r-tangent matrix
Newton-Raphson iterative solution with line search

gt — |: K (Au i ):| (i (Au{i} )5 Au'™Y = At 4o U gy Y




Objective stress integration (SLIM3D)

Trial pseudo-elastic stress
s' =2Gdev[de]+ AR s, AR, G = Ktr[Ae]+5

n+l n+l

. . . _ A
Strain increment: &, , = Au” ®b”+17 (h”+17 ”H?)

Rotation: Adw = 1 (hm,..7 —
5 W2

n+l 2

-1
) AR = 1+[1—%Aa)] Aw

Viscous stress update
tr, v tr, e
Sn+1 B\ Sn+l

B, £(B.)=(1=B,)ss|-2G a7y, (B.. s ] )=0

Plastic stress update
—-2GAyn, G,,=6,-KAyx,

i‘H-l n+1

AY < f (O.nJrl)_ O

A

i‘H-l n+1




Linearization and tangent operator
SLIM3D

Global tangent matrix
K :Kint _Kext — a fint _a fext

ou_n+l ou_ n+l

K" = Afl '[Qf;ﬂ (aAeo-nJrl ): (b;il ®bf+1 )+ (bn+1 0,4 'bfﬂ )1 d€y,

>
material stiffness geometric stiffness

+1+1

KeXt = Af] J JNANB aaupnﬂ ® (aé Xn+l X an Xn+1 )di dﬂ

-1-1
Consistent tangent operator
C*=0,0

Ag ™ n+l

Example (Drucker-Prager model)

2
Ctg=(K—K(pKw K ]1®1+2G{1—@J10—2G{G 2GAVJn®n

* * tr, v
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Sn+l n+l
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