
CHAPTER 1 1

The Seismic Source: Dynamics

Seismic waves propagate in ways that are largely governed by the relationship pü, : r ji,j
between acceleration and stress gradient, and by the relationship between stress and strain
known as Hooke's law (2. 18). But in the source region of a particular earthquake, Hooke's
Iaw fails. If we are to reach a quantitative understanding of the ground motions that result
from that earthquake, we need to replace Hooke's law by some other relationship that
accurately determines stress as a function of the deformation of materials within the source
region-or, that determines deformation as a function of stress.

So far we have suppressed the difficulties of this problem, because to interpret the
seismograms from one particular earthquake in detail, within the framework of Green
functions weighted by a displacement discontinuity across a fault surface, we saw in
Section 2.5 and Chapter 3 that we all we need to know is the fault slip as a function
of space and time on the fault. See equation (3.2), with which we started Chapter l0
on source kinematics, allowing us to study the seismic motion at nea.r and far fleld for a
propagating dislocation in cases where the slip function has already been specified-or at
least parameterized in a particular way. The form of the slip function was adopted intuitively
to simulate geologic faulting with the least number of parameters, preferably ones that could
be determined from analysis of the resulting seismic radiation. But unfortunately, some of
the slip functions analyzed in Chapter 10 turn out to have consequences that are physically
unacceptable.

Take the simplest case of an anti-plane problem in which a semi-infinite fault is
propagating with uniform velocity (Section 10.2.3). When the slip occurs as a step function,
the shear stress acting on the fault plane is given by equation (10.46),

t* ,/l - ,\ fr,ryz: u;T (putting xt :x - ut). (11.1)

We expect that the fault plane, once mptured, cannot sustain stress greater than the frictional
stress. But according to (11.1), the shear stress has nonzero values inside the fault plane
(x'= 0), becoming larger and larger without limit on the fault plane as the crack tip is
approached (i.e., as x' --> 0 from below). obviously, then, the assumption of step-function
slip leads to a gross violation of physical expectation. In this chapter we shall develop a 537
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varietyofbetteralternativestostep-functionslip,withtheprincipalaimof{indingfault
motions that not only are kinematlcally Satisfactory for shear failure, but are also associated

with plausible stresses on the fault plane'

InconsideringthefailureofHooke'slawforaparticulareafihquake'wecanregard
the fault plane-which will eventually rupture-as a surface of weakness. For example, as

stress slowly rises in the source region due to tectonic processes' we may assume that the

capacity ofirictional stress to resiJt the growing shearing stress is eventually exceeded' It

is the pre-existing fault surface that fails rather than another surface' precisely because the

fault is relatively-weak. But how does the failure actually take place? As stress rises during

the tectonic loading process over a period of perhaps decades' does strain generally stay

propotlionaltostress,oristhereatendencyforsomeductility(inwhichstrainratewould
be nonzero at fixed high stress, even if the stress were constant)? Even if there is no ductility'

does strain stay proportional to stress right up to the instant of failure' or do materials in the

source region exhibit a nucleation process in lvhich strain departs slightly from the linearity

predictedbyHooke,slaw,justpriortofailure?Ifthereisanucleationprocess,thenwhatis
its time scale and its dependence on stress relative to a critical stress? If failure occurs and

stresslevelsonthefaultsurfacedropfromtheirstaticfrictionalvaluesasfaultslipbegins'
then how quickly do they orop, what is the value of frictional resistance during the actual

process of fault slip, and how do stress levels continue to change as fault slip comes to a

halt?

Thesequestionsonmaterialpropertieshavelongbeenthesubjectoflaboratoryex-
periment.Manyobservationsare'summarizedbyCoulomb'slawoffriction,statingthat
frictional resistance to one object sliding over another is proportional to the net force bring-

ing the two objects into contact. The expression of coulomb's law in seismology is that

the frictional shearing stress between the two faces of a fault surface is proporlional to the

normal stress. As reviewed by Scholz (199S), in the standard model of stick-slip friction it

is assumed that sliding begins when the ratio of shear stress to normal stress reaches a value

pc.,calledthestaticfrictioncoefficient.onceslidingbegins,frictionalresistancefallstoa
lower value so that the coefficient of dynamic friction, p6, is less than p.. An instability

canresult,leadingtoslippropagationandallthephenomenaoffaultruptureandassociated
radiation of seismic waves'

Ithasbeenfoundexperimentallythat,u.isgreaterthelongerthefaultsurfaceshave
been in contactwithout sliding. Furthermore, the value of g.a depends onthe relative velocity

with which the fault surface slides' The general subject of fault constitutive laws has been

developed extensively by Dieterich and others (see Dieterich' 1981; Ruina' 1983; Sleep'

1987,Marone'1998;andDieterichandKilgore,lgg6).Asweshallseeinconsidering
particular examples, there is often a question as to whether the details of some particular

relationship between fault slip and fauli stress can be inferred from properties of the resulting

seismic waves, or whether these details entail time scales and length scales too shorl to

measure from the radiated signals. In the latter case, progress will more likely come from

extrapolation of phenomena measured in the laboratory-over scales on the ofder of a meter

ormuchless-uptoscalesontheorderofakilometerormuchmore,asneededinapplication
to earthquakes of significant size'

Thischapterstudiessimplemodelsofdynamicfaultingintwomainsections'followed
byashortersectionthatoutlinefeaturesofmorecomplicatedmodels.ThusinSectionll.l
weshallsupposethattherupturevelocityhasbeenprescribed(usually,weshallassume
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it has some constant value). We obtain a simple relation between slip and shear stress on
a fault plane for anti-plane problems. Then we describe the energy balance at the rupture
front for anti-plane and in-plane faulting, and introduce the concept ofcohesive force. As a
useful illustration ofrupture propagation that originates from a point (and therefore involves
both anti-plane and in-plane motions), we look at the case of a growing elliptical fault, for
which the radiated motions are known in detail. As an example of a fault that grows steadily
(from a point) and then suddenly stops, we describe a growing circular fault with known
final radius and use an important numerical procedure to obtain the far-field motions. In the
second main section, we recognize that shear failure is a spontaneous process and that the
velocity of rupture is itself an unknown and probably varying quantity, to be determined
as part of the solution to the problem in hand. The rupture-velocity history is known for
a variety of anti-plane problems and for certain in-plane problems. Our intent in these
Sections 11.1 and ll.2 is to develop analytical methods that provide ways to explore a
variety ofrelationships between fault stress and fault slip or slip velocity.

In consideration of the dynamics of a particular earthquake, it is vastly simplifying to
restrict attention to situations in which normal stress is unchanged by the faulting process.
But as we point out in Section 11.3, there are a number of important situations in which
normal stress is itself changed by faulting.

11.1 Dynamics of a Crack Propagating with prescribed Velocity

11.1.1 RELATIONS BETWEEN STRESS AND SLIP FOR
A PROPAGATING CRACK

In order to find an appropriate slip function for a crack propagating with a constant velocity
u, we shall first find a relationship between the stress and slip on the fault plane for a
propagating anti-plane dislocation.

Let the slip function a,w(x/) be an arbitrary function. we shall express a,w(xt) by a su-
perposition of step functions, as shown in Figure 1 1 . I . An arbitr ary Lw (xt) can be written as

A,w(x,): - I,o T or: - I:*9!!!Hc - x,) d(. (rr.2)

The step-function slip H (t - r'y with tip at xl : ( will generate a stress component
rn, according to equation (1 1.1) given by

JT-W

Multiplying by the srep heighr -(a Lw /ae d( and integraring over ( from -oo to 0, we
find that the stress due to the slip function Aur(x/) is
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where Arir is the slip velocity.
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FIGURE 11.1
Approximating an arbi-

trary slip function Lw(x'1
by a superposition of steP

functions.

I--*,^' (r1'4)

For the in-plane problem, a similar relation is found between the shear stress trr. on the

fault plane and slip velocity ArÜ. Applying the same superposition to equation (10'65)' we

get

1t - u21zB21
rl-l
lrr;;TF

Inboth (11.3) and (11.4), we see thatthe shear stress on the faultplane is aconstant times

the Hilbert transform of slip velocity.

A function and its Hilberl transform are very closely related. From Box 5'6, we see that

if g(r) is the Hilbert transform of a function /(x), then these two function share a common

amplitude spectral density, and their spectral phases differ by r 12'

Thus the shear stress and the slip velocity on the plane y : 0 must share a common

amplitude spectral density apart from a constant factor, with a phase difference of n 12'

Furthermore, the slip velocity must be zero outside the crack (because no slip occurs there

yet), and the shear stress must be zero inside the crack (assuming no frictional stress for

simplicity). In other words, we want to find a pair of functions /(x) and g(x) that satisfy

f (x):0 if x > 0, 8(r) :0 if < 0, and 8(x):+l:*o*
(11.5)

From tables of Hilbert transforms, we find that the following choices of /(x) and g("t)

satisfv these three conditions:

-H(x)and g(x):-r,

It is easy to show that they satisfy the integral in equation (1 1.5) by extending ( to a complex

plane and making a branch cut along the negative real axis (Fig. 11'2). The integral along

I O *ltt be equal to the one along O B because of the opposite signs of J= on the two

paths. For -r > 0, the residue evaluation of ( :x gives 8(x): rl Ji' and for x < 0 the

integral vanishes because the pole is outside the contour'

Thus we find for our mechanics problem that the boundary conditions for a moving

crack are satisfied by a square-root singularity in stress ahead ofthe crack tip, and another

square-root singularity in slip velocity behind the crack tip. The square-root singularity in

stress is well known for a static crack.

^t-,. 2pfr'I
rr\,(x):- ? |JTU' L

ü2 la2
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FIGURE 11,2
Integration path for t I 1.5.1

when /t( | : H (-(trt:(.

By integrating the slip velocity, we find that the slip itself is proporrional to J -7 for
.r' < 0. We can now summarize results for the anti-plane case as

Lw : {J4H?x'),

where

and the in-plane case as

Lu : {tn[-a'H (-x'),

where

K:JTi pelr-,F4F

Att
Lü - 

--" H(-rlt
z\/ -x'
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^7H(x 

).
\/ ZJt X'

4

A'rt
Lü- '-" H(_ vt\

z\/ _x,
K'

T : 

-H(yt\

-xy /:------'- \^ '.v l7( x'

(11.6)

(rr.7 )

^F ,--
p A' P2 | J | -i'E - ( | - u2 lzBzf / urt -ljplL'K' : J2n

u2

The coefficients K and K' are called stress-intensie factors in fracture mechanics.
Note that K is zero for u : 6. And since

K' : -+\/Z; p.,+'B2u2ngyul f
where R is the Rayleigh function introduced in (5.56), we find that the stress singularity
ahead ofthe in-plane crack is zero for rupture speed u : cn, the Rayleigh wave speed.

In the preceding chapter, we studied seismic motion from a propagating dislocation
with step-function slip. Now that we have found a more appropriate slip function for the
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Box 11.1
Stress singularities for static, in-plane, and anti-plane shear cracks offinite
width2a.

The equilibrium equation for the anti-plane displacement ur(x, y) is given by

02w 02w
;-; -f ;-; : u.
dx' oy'

For a crack plane defined by lxl < a, ) :0, and a uniform stress 7m acting at 'x -+ oo and

y -+ oo, the boundary conditions for a stress-free crack are

(1)

(3)

öw

=:0 
lxl <a.y:Q.

dy

T
w --> zy as.x, y -> oo.

p

(2)

and

(The reference state for displacement is here taken as the stress-free state, in contrast with

many of the dynamic solutions in this chapter and the previous one, where the reference

state is the static strained state just prior to crack growth.)

Equation (l) can be satisfied by the real or imaginary part of an analytic function of

z: x liy. It is easy to show that the imaginary part of

f {x + iyt:!-Ji+ ty\2 - 62
p

satisfies equations (1), (2), and (3). So

' 
: äfi;'!- r' - o2y2 + 4,2yz1u4eio/2|,

p

where sin 0 :2ry f @. we then have

t 

-

W::\/A.-x.
p

- -r* 1@ - xz y: -0, lxl < a.
p

The stress on the plane ) :0, but outside ofthe crack, is

aul x

"äl :'*ffi lxt>a' Q)
-lY:u

Here we find the square-root singularity of stress at both ends of the crack x : a. The

stress intensity factor is r*Jtra, and grows in proportion to the square root of the crack

y:*0,lxl<a

(4)

(s)

(6)

(continued)



BOX 11 .1 @ontinued)

length a. The above solution was given by Knopoff (195g). A solution for an in-prane shear
crack was given by Stan (192g), with the following results:

T \ -L),,
u : -3 .';.' ,'r-v'az _ xz y: *0. lxl < a2 p(), * u)

(8): -+ I,: 
,2tt .J"] _ r, y: _o,txt < az I,uL + u)

and

xr*): rrc-5; y:O,lxl > a.
\/X--A.

(e)
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crack in the fotm J -r' H (-x') (instead of H (-x/)),we shall re-examine the motion in the
vicinity of the fault. Using equati on (11.2), we can express the slip function for the moving
crack as a superposition of step functions:

AJ-/H\-x'): lug - x,) d(.

Since our system is linear, if the seismic motion corresponding to unit step-f'unction slip
H (- x') was f (x/, y), then the motion g (x,, y) for the moving crack will be

., Afo 1g(x.l'):; | , ,ftx'-1.ytdq.z ,t_cn !_l

Using this relation, we can obtain the motion and stress around the tip of the anti-
plane crack from the results previously obtained for a step-function dislocation. putting
equations (10-41) and (10.45) into f (xt,y) of equation (r 1.g), rhe parricle velocity ,., and
stress component rrz for the moving crack can be written as

,b:!! fo I vvd( ^^^ - _ A1t fo I yG'-(ta1- 4t J -* .,,=G'-C/+nry, ano tv:ä 
J-* 6ffi

where y : !'T - u2 / B2. Both integrals can be evaluated easily by using the contour shown
inFigure ll.2.Nowpolesarelocated ate :xltiyy,andtheeval,itiorrof residuesat
these poles gives

+f_

ü:4!(;h-;h):
',.:Y (*^.rJ;=f,):

Av

(11.8)

(11.e)4Jt t'1 .ü\/x''+y'yz
/--:--

,l l*'' * y2y2 + *'Al.ty

4J' /-Ä-
t/x''*y'yt

(1 1.10)
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FIGURE 11.3
Particle velocity and

displacement normal
to the fault plane for
a shear crack and for
a step-function shear

dislocation.

In-plane
shear crack

Step-function
dislocation

Particle
velocily of
transverse
component

1l
-- , , Il(x')a./x

Displacement
of

transverse
component

^rFä1x'1 
+ const loglx'l

In contrast to the case of a step-function dislocation, the peak amplitude of particle velocity

decays with distance from the fault as ll Jy."lhe motion for the crack is smoother than for

a dislocation. Before discussing the difference in their spectra, we shall point out a drastic

difference in the transverse component of particle motion between the in-plane crack and

the in-plane step-function dislocation ("transverse" here means "perpendicular to the fault

plane").

The transverse component ofparticle velocity for the in-plane step-function dislocation

(conesponding to ü(x,0, r) in (10.63)) is of the fotm f (x/,!) :1lx' along y : 0' Using

( 1 1.S), the corresponding solution for the crack is (see Fig. I 1.3)

rfo I dcg(x.0):-, 1 r-,_r:L J-6) V-g j 
-9

-0

-{'>0

xl <0,

1l
L \/X,

which has the same form as the shear stress ury of the in-plane crack obtained earlier.

Remarkably, the transverse component of particle velocity is zero inside the crack. The

coffesponding displacement will then be constant inside the crack, and of the form r/7
ahead of the crack. In the case of step-function slip, the transverse component of displace-

ment shows a symmetric impulsive form (- log lx'l), as can be seen in Figure I 1.3' which

qualitatively agrees with the observed form for the Parkfield earthquake, as discussed in

Section t0.2.1. The solution for the crack, on the other hand, does not show the symmet-

ric impulsive form, but an asymmetric step-like form, r,? H6') + constant' as shown in

Fisure 11.3.

r
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Equarion (11.8) shows that g(x,y) is rhe convolurion of f (x,y) with +H(_x)/J4.For k : @p > 0, the Fourier transform of the latter function can be obtained as

fo I o i**.,.-l fo I ,,.
r t __ _^_: | _/e-,k*dx
r'- oo v -j z J_ix J_x

r _1,,

\/Y

t--2-"' dz

545

I
,

: rij,j' tii : ciigepl,

eii: \@,,, -t ui,),

(changing the path to rhe
negative imaginary x-axis)

(putting x - -iy)

(putting y : z2)

components of stress, strain, and

: riin i, where n, is the outward

: lei'U fr-
: 

"in/a fo* 
,

T;
I'L oin/4

''l t, 
-

t-;-
| " -in/4

',1 .p"
In the frequency domain, therefore, s@,y) (the seismic motion caused by a propagating
semi-infinite crack) has an amplitude spectrum proportional to r/ 

^/a 
ttmes the spectrum off (x 

' 
y) (the seismic motion caused by a propagating dislocation with step-fünction slip),

and the phase is shifted by z/4. This phase shift in the x-coordinate conesponds to a delay of
n /4 in the time axis' Because the 1/ Ja factor will attenuate higher frequencies, the motion
caused by the propagating crack is smoother than the motion caused by the propagating
dislocation with step-function slip.

11.1.2 ENERGETICS AT THE CRACK TIP

As the crack tip propagates, srip occurs across the fault plane. Neglecting friction, thetraction on the fault plane is zero over the part where slip is oc"urringl It seems, therefore,
that there is no work done on a crack except for the work against rrttion. A closer look,
however, reveals that a finite amount of work is indeed done at the crack tip per unit distance
of its propagation' since the crack tip is moving, it is not obvious how to calculate this work.Let us first derive a general formula for two-dimensional cracks following Freund (rgi2).
To obtain compact equations we shall use x, (i : I,2,3) coordinates, put the crack plane
at xt:0, and let its tip propagate toward the *xr-direction with velocity u. As shown inFigure I 1'4, we consider an extemal surface s" fixeä to the solid body, with the crack surfaces" already formed and an internal surface s, enclosing and traveling with the crack tip.In the volume v bounded by these three surfaces, the body obeys the equation ofmotion, Hooke's law, and strain_displacement relations:

(11.11)

(rr.r2)

wnere c;ip1;rij,etj, andu, arc the elastic moduli and
displacement. We assume that body forces are absent.

On the surfaces ,S" and Sr, traction { is given as {normal of the surface of V.

I
2

1

2

ou,
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FIGURE 11.4

The rate ofwork ofthe tractions on S", and the rates ofincrease ofkinetic energy and

strain energy inV, are, respectively,

iv: I riüicts. k:+ [ jor,o,or. ü:+ [ !,,,,,,av. (tl.l3)
Js dtJv'' dtJv'

The energy flow g into the crack tip can now be obtained as a limit of the flow into the inside

of S,:

s:w - ri'Tr tk + ul.

Since S, is moving. along with the crack tip, the region V in equation (11.13) is time-

dependent. Thus both R and U consist of the change in energy occurring inside V and the

flux of energy through the boundary S,. These contributions are

k: I pü,ü,dv+ [ loa,,;,u"as,Jv' Jr, -

. f f ,U: I t;/,.,dV * l-)r;l1iundS (usingr'r:ryi).
Jv Jsr

where un is the normal component of velocity of a point on Sr. Replacing the first integrand

forUby (tiiü),i-tij,jüiandapplyingthedivergencetheoremtolr(q,ü,),tdV,wefrnd

r f r fg: I TiüidS -Jinf l ltp",n,-rij.jüitdV+ 1^ ^t,1n1üidSJE rr+u IJY rs;+sc

ft-'l
+ | (r;,n,ü.* Lrijri,jrn+ |oüi"ir") as | (11'14)

./s,., , 
J

: - tim [^ (r,inir, -r !ri1ü,.,un+ loüiüiu,) as.
S,---OJS, \'/ r - 

1
n
,,: l.J

x2

s

(?
\
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X':X-0t

FIGURE 11.5

where we used (11.11) and (ILlz). The contribution from S" is zero because un : 0 and

because the crack surface is traction-free. (As mentioned in the beginning of this section,

we chose to neglect the effect of friction here.)

Now, coming back to the coordinate frame (r', y) moving with the tip, we shall choose

a rectangular surface shown in Figure 1 1.5 as Sr. The side lengths of the rectangle are 2ö in
the x-direction and2t in the y-direction. If we shrink the width e to zero, the contribution
from the sides x: *ä is zero. Since u, is zero on the sides !:*.e, equation (11.14) is

simplified to

7ö

s : ;5 J_uro',0) 
. [ü(.r/, +0) - ttlx', -01] ax'.

Thus, by putting equation (11.6) into the above integral, the rate of work for the anti-
plane case is obtained as

AuK .. f3g:-----; lrm I- 2"/2n 6+0./_5
H(-x')

/r

and, using equation (11.7) for the in-plane case, as

A'uK'
o oBlLV LJ' ls/,

H(x') , ,

\/ x'

H(-x') H(x') , ,

- 

nx
t/ -x' J x'

The integrand in the above formulas is zero except at x' :0, yet the integration gives a

finite result because the integrand behaves like a Dirac delta function. To show this, let us

consider the followins intesral:

H(x/)H(x - xt)[* H{x'SH1x - t
J-q: t/x'Jx - x'

d*' : [* ---!r:- : r H(x) (see Box 9.3).
Jo t/x'Jx - x'

It then follows that

[* , (l) ae*'l 
t!-r, _ n H(o) :LJ-* Jx' J-x' 2
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Thus, for the anti-plane crack, the rate of work done at the crack tip is

(11.1s)

and for the in-Plane crack

, : ä#lF 5- (' - #)' l,F+,)' (11.16)

uK2y
2rrr(x', y)dr(x', Y) :

2n p(x'2 + y2yz)

where K is the stress-intensity factor defined earlier and y - 6 -;F/F Pufting .) : *e

into the above formula and integrating from x' : -8 ro x' : *ö' we get

The above result may be obtained without using a value of H (x) at x : 0' From equations

(11.9) and (11.12) fbr stress and particle velocity ofthe anti-plane crack' the first term of

the intesrand of (11.14) is given by

s:.rs!:*#""-'(') :# (1 1.17)

which confirms the result given in (11'15)'

Inthecaseoftheanti-planecrack,theenergyflowatthetipiszerowhenK:0'
i.e., when the rupture velocity is equal to the shear velocity. In the case of the in-plane

crack, it is zero when the rupture velocity is equal to the Rayleigh-wave velocity' Thus'

at these velocities, energy needed for creating new surfaces of the crack cannot be sup-

plied to the crack tip. fn ttris sense, they are the terminal velocities of crack propagation'
.Eq,,atio.' 

( 1 1 . 16) shows that if the rupture velocity exceeds the Rayleigh-wave velocity, g

becomes negative. In other words, the crack tip becomes a source of energy flow instead

of a sink. This is physically unacceptable, and it appears that the speed of the in-plane

shear crack cannot exceed the Rayleigh-wave velocity. This conclusion' however' will be

modified in Section rr.2.3,where we discuss rupture propagation in a medium with finite

cohesive force.

11.1.3 COHESIVE FORCE

The solutions fbr stress and particle velocity around the propagating crack tip obtained in

Section 1 1 .1 . I are still not realistic, because they both become infinite at the crack tip' All

materials have a finite strength and cannot withstand stress beyond some limit' The way to

eliminate the singularities is found by using the concept of cohesive force' introduced by

Barenblatt (1959). Thrs force is distributed inside the crack near the tip' and it opposes the

external stress.
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BOX 11.2
Fracture criteria

Since most materials fracture when stressed beyond some critical level, it is natural to
describe the condition for fracture by a critical applied sffess, or strength of material. It
practice, however, it has long been known that the fracture strength of a given material
varies greatly. The theories built around the concept of strength as a material constant were
for a long time incapable of accounting for observed diversity in fracture behavior.

A breakthrough was made by A.A. Griflith in 1920.He assumed the existence of flaws in
material in the form of cracks. Creating new crack surfaces requires an increase of the free
surface energy. This energy must be supplied from the surrounding medium for the crack
to extend. Griffith's fracture criterion is based on the balance of consumed surface energy
and the supply of mechanical energy for an infinitesimal virtual increase in crack length.
In this section, we have just calculated the rate of supply of mechanical energy to the crack
tip when the crack tip moves at a constanr speed ((11.15) and (11.16)). In Section 11.2.1,
we shall use the Griffith concept of energy balance in deriving the equation of motion for a
crack tip, equation (1 1.34).

An alternative approach to fracture mechanics was formulated around the concept of
sffess-intensity factor by G. R. Irwin and his associates in about 1950. It was found that the
Griffith fracture criterion is equivalent to the existence of a critical stress-intensity factor.
If the stress-intensity factor exceeds the critical value, the crack witl extend. We shall call
this the Irwin criterion.

In equation (11.15) and (11.16), we have shown that the energy flow into the crack tip
is determined by the stress-intensity factor K or K/, and the rupture-propagation velocity
u. Therefore, at the initiation of crack extension, when u :0, the energy flow and stress-
intensity factor are uniquely related, demonstrating the equivalence of Griffith and Irwin
criteria. The equivalence relation is shown explicitly in (11.22), setting r :0 there for an
anti-plane crack and also in (1 1.82) for an in-plane crack.

For a finite rupture velocity u, both the Griffith surface energy and the critical stress-
intensity factor may depend on u. In sections 11.2.2 and 11 .2.3, we shall consider two
fracture criteria. In the Griffith criterion, we assume that the surface energy does not depend
on u; in the Irwin criterion, we assume that the critical stress intensity factor is independent
of u.Figure 11.21 comparesthemotionof thecracktipobtainedbythetwocriteria.

Let us consider the case of an anti-plane crack, and put the total traction on the ruptured
surface (x' < 0) as

or"(x' ,0) : ol" + o"(x'). (11.18)

Hete of" is due to dynamic friction and acts all over the crack, but the cohesive force (per
unit area) o"(r') is nonzero only in -d < x' < 0, where d is the length of the end region, as

shown in Figure 1 1.6. The distribution of the cohesive force will generate a concentration
of zu, ahead ofthe crack tip, with the stress-intensity factor given by
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fu o,(4t *
| / r"'-'J d \/-\

(rl.l9)
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FIGURE 11,6

This result is derived later in Box 11.3, in a discussion of equation (11.55). The original

stress singularity due to the external stress may be eliminated if we choose the cohesive

force o"(O that satisfies the condition

With this choice of o"(O, the stress component onr(x',0) will be finite and continuous at

the crack tip. Since the slip velocity Aü is the Hilbert transform of the shear stress times

a constant, as shown in equation (11.3), the singularity of Adr is also removed if the shear

stress becomes continuous there.

If d is small, the elastic field due to the cohesive force is limited near the crack tip and

does not affect the field outside the immediate vicinity of the crack tip. Then the energy

flow into the crack tip through the external surface will be the same as given in (11.15) for

the case of no cohesive force. This energy flow is absorbed to create a new surface of the

crack. Expressing the surface energy per unit area as G, we have

8:2Gu, (rr.2r)

where the factor 2 accounts for both faces of the crack. From (11.15) and (l 1.21)' we find

(rr.22)

(A similar relation may be obtained for an in-plane shear crack using (11.16).)

In order to get a rough estimate of the highest frequencies involved in seismic motion

caused by propagation of a crack, we shall assume that the cohesive force is uniformly

distributed over the end region. The corresponding stress-intensity factor is

n0

IJ-d

":#l

o"(() , 
"t t u\' (11.20)

(r\.23)
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where oc is the cohesive force per unit area. putting (1r.23) into (lr.2z), we find
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(rr.24)

This is a relationship between impofiant quantities that determine the seismic motion around
the crack tip, about which we know very little. In general, G, o", and, d may depend on the
rupture velocity.

Since d is the measure of distance over which slip is resisted, the larger d is, the
slower the slip at the initial stage of faulting. Contrarily, we expect higher slip velocity
and acceleration as d gets shorter. The characteristic time constant tdmay be given by d/u:

t6: df u -
o pcJr - 1r! B\ (1r.2s)

zoc'u

/6 is the time constant that controls the high end of the seismic spectrum. Static experiments
on rock samples in the laboratory give G on the order of lO3 erglcm2 and o" on the order of
109 dyn/cm2. For a rough estimate, we shall assume that their order of magnitude remains
the same in the dynamic case, so that for B :3.5 km/s, u : 3 knr,/s, and p, :3 x 1011
dyn/cm2, we get

/a: l0 es'

Thus we expect radiation of seismic waves with frequency up to a gigahertzif the laboratory
values are applicable.

In the actual field situation, G may increase with crack length. The stress around the
crack tip increases as the crack length increases. (As shown in Box 1 1. 1, the static stress-
intensity factor increases for larger cracks.) Consequently, the volume of the region of
microcracks and plastic deformation will increase. This region will absorb energy, making
the apparent value of G greater for larger earthquakes.

The highest frequency contained in usual earthquake records is on the order of 100 Hz.
Assuming that the cohesive stress o" in the actual fault gouge is on the order of 108 dyn/cmz,
the value of G corresponding to /a : 0.01 s will be around 108 erglcn? from (l 1.25), which
is many orders of magnitude greater than the laboratory values.

The physical meaning of cohesive force becomes clearer if we write it, instead of
equation ( 1 1 . I 8), in the form of constitutive equations, such as

or"(x',0) : of, + o"lLw(x')l x' < 0 (rr.26)

o yz\x'. 0) : oir* o.fs(x') |

, :'o"'o /
l11r I

x'<O, (r1.27 )

where e is the plastic strain in the fault gouge and Aru is the equivalent slip between the fault
surfaces corresponding to the plastic strain. If the thickness of the fault gouge is b, we may
take Ar.u : be.The specific surface energy G can be expressed as G : ) ff, o"@) dO,
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where the factor j accounts for the two surfaces of the crack. Relation (II.27) may be

determined by laboratory experiments on the stress-strain relation of rock samples and

field studies of gouge thickness, and it may be appropriate to allow o" to depend on Adr

as well as on Aur. Once the relation is known, the slip function can be calculated by an

iterative method. We start with an initial guess of the slip function Lw(x') and obtain the

corresponding cohesive force from (11.26) or (11.27). Then we can calculate the stress-

intensity factor K from (11.20). At a distance sufficiently far from the tip compared with
the scale of the end region, the cohesive force no longer governs the slip function, which
is determined instead by macroscopic crack parameters such as the shape, length, and

stress drop. Knowing o* for -oo < x' < @, the slip velocity can be obtained by the

Hilbert transform (see equation (11.3)). The resulting slip function can be used as the

second trial function for revising the cohesive force. The iteration proceeds until the slip

function converges to a final solution. Ida (1972, 1973) used this method to calculate the

slip function and its time derivatives for various cases of the cohesive force diagram (o"

as a function of slip [Au]), assuming a semi-infinite crack with constant stress drop as

the macroscopic model, and discussed the maximum acceleration and velocity in terms of
this material property. Andrews (1916) extended Ida's work and incorporated the cohesive

force in a finite-difference calculation of crack propagation (discussed in Section 11.2.3 and

Fig. 11.26), combining numerical analysis of rupture propagation with laboratory results

on rock mechanics.

1-I.1.4 NEAR FIELD OF A GROWING ELLIPTICAL CRACK

In Section 10.1.6, we studied the far-fleld body waves from an elliptical crack growing with
constant velocity and keeping the same shape. Neglecting the stopping phase, we found

that the initial rise of far-field displacement grows parabolically, being proportional to the

square of time measured from the onset. The corresponding acceleration showed a finite
discontinuity at the onset. In this section, we shall consider seismic motion in the near field
of the growing elliptical crack, for which a Cagniard solution is available.

Let us assume initially a state of uniform stress o0 and suppose that a plane shear

crack nucleates at the origin at time / :0. The fault surface S(t) is defined in Cartesian

coordinates by the ellipse

s(/) :
which (see Figure I 1.7)) has axes growing steadily at speeds u and u, each less than (or

equal to) the shear-wave speed B.The shear stresses across plane 13 :0 are influenced by

waves emanating from the point of nucleation, but after arrival of the rupture they drop to

new values prescribed over S(l).
To describe the problem further, let u be displacement from the initial (prestressed,

static) position, with r as the stress tensor due to u (so that o0 + t is the total stress).

Within an infinite homogeneous medium, u and r have certain symmetric properlies with
respect to the crack plane x3 : 0 (see Problem 10.2): from equation (10.39) or an argument

similar to the one used in the in-plane problem (Section 10.2.4), we find that rrr, u r, and

u, arc odd functions of x3 when the discontinuity across the crack plane is restricted to

[r, 
: o: *1112 + *1112 . Pl ,
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FIGURE 11.7

shearing. These quantities must therefore be zero &t x3:0 wherever they are continuous
there. Thus we have the following boundary conditions:

233 : 0 everywhere on Jq :0 (11.28)

and

at: u2- 0 on 13 : 0 but off S(r). (1I.29)

Burridge and Willis (1969) found the following simple solution for the slip function
across a growing elliptical shear crack:
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(::) : (;)
-2 -2t ^1 ^.)

' - r-'i oll .t3 : *0 and S(r)
(11.30)

/0\: 
l' o / 

olr 't3 : *o but off s(t)'

The elastic field generated by this slip function under the conditions (11.28) aad (11.29)
indeed gives a shear-stress jump (ztr, ry) that is constant in time and space on s(l); zr is
proportionaltoaandzrrisproportionaltob,wherea andbNeparticle-velocitycomponents
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at the center of the crack, as can be seen from (11.30). For simplicity, we shall take the

rt-axis in the direction of maximum initial shear, so that no drop occurs in the stress

component zrr. In this case, b: 0 and the slip component u2 disappears. On the moving

part ofthe fa:ult, rrris constant, and we can think ofthe total shear stress o$ + rr3 as being

proportional to o$ via a dynamic coefficient of friction according to the Coulomb law of
friction.

Following Richards (I913b,1916a), we shall take the following steps for computing

the elastic field radiated from the growing crack:

(i) Fourier transformation for x, and x2;Laplace transformation for /:

f (xr,xz,4,t) --> f (kyk2,\,s)

where / is any dependent variable (such as a displacement component) of interest.

Boundary conditions ol1 .{3 : 0 are thus transformed to

4tauu u2:0,733:0, üI:
(s2+k2ru2+k2ruz1z'

(ii) Transformation of the wave equation and use of potentials to derive algebraic expres-

sions for u(kt,kr,x3, s). The double Fourier inverse transform is taken, yielding the

forward Laplace transform as an explicit double integral over the whole (ky k) plane.

A rotation and stretch of the (kr, k) plane to variables (w, q) is carried out via the de

Hoop transformation

kr: (s /a)(q cos @ - w sin Q),

kr: (s /a)(q sin @ * u cos @),

where cy is the P-wave speed. The Laplace-transformed P-wave component of dis-

placement at position x then has the form

uP(x,s) :1t/s2) 
Ir* 

o. Il dqß(q,w,Q)e-" (11.31)

whereF is known, t:t(e.w.0) =f-iC sin e + \,1+7+;F.ore] {n/o), -A
the spherical polars (Ä,0,Q) for x are shown in Figure ll.1 .ft can be shown that

only the positive real 4-axis is needed for the integration in (11.31). There is a similar

expression for the S-wave component.

(iii) Application of Cagniard's method, tuming the q-integral into the Laplace transform

of the u-integral, so that displacement in the time domain is recognized as a single

integral over u. A complication arises because of singularities of the integrand F, as

shown in Figure 11.8. This is a diagram of the complex q-plane, and it shows that

between the real-axis path of integration needed in ( 1 1.3 I ) and the Cagniard path (on

which the exponent t(q,w,9) in (11.31) is real), the integrand has a pole. It turns
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FIGURE 11.8
There is a pole at 4u, near the Cagniard path for
evaluating ( 1 1 .3 1). [From Richard s, l9'7 6a)

out to be a second-order pole, denoted by qrr, and is due to the moving nature ofthe
source. It is necessary to pick up residues in converting to the cagniard path, giving
the form

uP(x, s; : I
1 Io* o* 

Io* o,F(q(t),*,ür-,,#

* 
Ir* 

dw R(qu,, w, Q,s)e-'t (eu,, w, o),

(rr.32)

From the first term on the right-hand side here, one can invert to the time domain in
the usual fashion (i.e., by reversing the order ofintegration and recognizing the result
as a forward Laplace transform), obtaining a single integral over u. The second term
on the right-hand side of (1 1.3) is already in the form suitable for recognition as the
Laplace transform of a function of time. This term therefore results in an algebraic
closed-form expression. This overall method, an algebraic expression resulting from
an integral of residues, was first developed by Gakenheimer and Miklowitz .1969\

for solving Lamb's problem with a moving source.

As usual for Cagniard inversion of three-dimensional problems (see Section 6.5), the
complete seismogram can be calculated only numerically, an integration being necessary
for each point in the time series. Figure 11.9 shows theoretical record sections for lr- and
t3-components of acceleration near a left-lateral strike-slip fault. The coordinates for the
four stations are (1, 1.5,0.5), (4, 1.5,0.5), (7, 1.5,0.5), and (10, 1.5,0.5). The density
of the medium is 2.7 gm/cm3, the p-wave velocity is 5.2 km/s, and the s-wave velocity is
3 km/s. The rupture speed in the xr-directi on is 907o of the Rayleigh-wave velocity, and that
in the xr-direction is 90% of the s-wave velocity. we see, in this case, small p-waves, sharp
stepJike S-waves arriving from the nucleation point, and large acceleration associated with
the passage of the crack tip. The amplitude of waves from the nucleation point decreases
with distance, whereas the acceleration associated with passage of the crack tip increases
because the stress-intensity factor increases with increasing crack length.

The corresponding displacement records are shown in Figure 11.10. As discussed
in Section 11.1.1, the transverse component shows a step-like waveform rather than a

Req
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- 

Parallel

Transverse

FIGURE 11.9
Synthetic seismograms for xr- and xr-components of acceleration at stations shown at the top. [From

Richards, l976a.l

synmetric, impulsive form. The parallel components show a very slow rise beginning at

the arrival of P-waves from the nucleation point, and do not show any clear feature that

can be associated with passage of the rupture front. This shows the difficulty of accurately

estimating rupture velocity from displacement measurements at points off the crack plane.

Compact formulas can be obtained for approximate waveforms corresponding to the

arrivals of P- and S-waves from the nucleation point. At the arrival time / : Rla, we find

that the acceleration has a jump discontinuity:

..Du, :!(2!* acose 
Htr 

-RlatP.

whereD:(u2coszö+u2sin26)1a2.ß,e,ü arethesphericalcoordinatesshowninFig-

ure 11.7. The vector üP points to the radial (i.e. longitudinal) direction from the nucleation

point, given by the unit vector ä. The acceleration due to shear waves from the nucleation

point shows a jump discontinuity att : Rlfr:

@@

ür

ü3

ö

ö

o

ö
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FIGURE 11.10
Synthetic seismograms for x,- and xr-components of displacement at stations shown at the top. [From
Richards. 7976a.1

Uist, i;t. üs3l: 2uu
fcos I (a, 0, 0)(l - Dqz sin2 e 1Bz7z

-rz sin 0 cos g (sin 20 cos @, sin 20 sin Q, cos 2r1tl 
H (t - R / B) 

.

Ä

The high-frequency asymptote of the acceleration is therefore proportional to a-1, and
the corresponding displacement spectrum has a high-frequency asymptote like ro-3, in
agreement with previous results (equation (10.30)). The radiation pattern of these waves
shows a double-couple symmetry modified by the factors (r - D sinz 01-z for p-waves
and (1 - Dct2 sin2 0 / BzS-z for S-waves.

Another compact form of approximate solution can be obtained for singularities of
particle velocity and traction components near the crack tip. Let us denote the arrival time
ofthe crack tip at (x1, xr,O) as /c, so that

,,:J*l/r,+xj/u2.

The particle velocity a, on the plane -r3 : 0 is given by boundary conditions (1I.29) and
(11.30) as

ü1-a^ft"pHG -Q/ltt -t" (1 1.33)
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FIGURE 11.11
Local Cartesian coordi-

nates in the normal (n)

and tangent (t) directions.

[From Richards, 197 6a.]

Singularitiesilü,andTlilateabsentoll-]ll3:0,sincethesequantitiesarezerothroughout
the plane. Singularities in the remaining velocity and traction components on x3 : Q 31s

2F2V a cos Q

Ua2B,

4trF2orß- 
i2ot3FBs

UU
l) :-

q

which is simply related to B" and Br.

I Io, ts, + B? -B,B.l .lr' 
H tt" - tt 

.
12" rr -,-"JU2F &='

[{"" - nr) nrv2 
"os2 

4 + i (utn'rr - v2 cosz o)

Lt"--')

(t r o,)l
(11.34)

" Jt"PHQ.-DlJt"-t,
4U|zocos@sinrö r -1 r/ r,^r\l lt" Htt"-t\

,r, - -ffi Luru" - Bi - ä \"' I p- 
) ) i, 6.

where pr. is the rigidity and all capital letter symbols are dimensionless quantities given by

(J :u/u, V :v/u, F:(J2sin2@+V2cos2Q,

-r , ^, q2 IJasin2Q+v4cos24
BV + l: Bs -r F: U,rr* .

Since the singularities (11.33) and (11.34) describe local properties of the motion at

points near the crack tip, it is instructive to work with a coordinate system related naturally

to the local geometry. Figure 11.11 shows such a system, using directions of the normal,

the tangent, and the binormal (i.e., the r3-axis). Tensor components a.re fotated to

r3r: r3tcos X * 22, sin X. rr3: -r3t sin X * r23 cos X'

Letting u, be the velocity of rupture in direction n, we find that

ua srn2 ö + v4 cos2 6

I
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We can now resolve the local motion into in-plane components (un and t,n) and anti-
plane components (2, and r,). Then the singularities for the in-plane components are

559

where R(l/u n1 : l{a2 /ß2)@l1Bz,
function of (5.56),

H(r-t\ 'c'

-'
-apF2urYR( l/u,) cos d H(tc- t)

Bsu

- 48sBp + 4B2sll@2u?), so that R is the Ravleieh

u.-

T3n

_ ctunV cos Q

uU

R(p) =

and singularities for the anti-plane components are

-aunU sin Q H(t - tr)

(; -,0') (1 1.35)

aV

Tt3 -apUurB, sin ö
u2v

In agreement with results obtained in Section 11.1.1, the in-plane stress singularity
will vanish wherever the rupture velocity is the Rayleigh-wave velocity, and the anti-plane
singularity will be zero wherever the rupture velocity is the shear velocity (then, B, : 0).
The energy flow into the crack tip per unit length of rupture front can be obtained in the same
way as for the two-dimensional crack. Integrating the work rate over the area enclosing the
crack tip and moving with it, we find the rate of energy flow into the crack tip as

?o

s:l'Ilj | " (tj,a,ün*r,jLü,) dn
" -v J_ö-

(1 1.36)

4u3U2v2 B rF

r lr|2u,
"2t"lnl 0,1fl)' ua sin2 O - R (r/u,) ozul,va 

"or, d]

For u, less than the Rayleigh-wave speed c*, R(l/un) is negative and the crack tip is an
energy sink of both anti-plane and in-plane motions. But for u, ) cB, R(llu,) is positive
and the crack tip becomes the apparent energy source for in-plane motion. This is unrealistic
for a pure in-plane crack, but may be possible if the energy flow supplied by the anti-plane
component (positive for u, < B) can compensate for it (Andrews, 1994). The motion at

d : 0 is purely in-plane, and the terminal velocity of the crack tip will be the Rayleigh-
wave velocity c*. The motion at0- 90'is purely anti-plane, with its terminal velocity
being the shear-wave velocity B. For arbitrary @, setting g:0 in (11.36) will give the
terminal velocity. The resultant terminal crack will be approximately elliptical, with major
and minor axes growing at speeds B and c*.

tc

2F

tc

2F

tc

2F
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The above discussion ofterminal velocity is based only on the rates ofenergy balance

at the crack tip. In the case of an in-plane shear crack, it is possible that the stress associated

with P- and S-waves running ahead of the crack tip can overcome the cohesive force (if
finite), and the rupture velocity will exceed the Rayleigh-wave velocity, eventually reaching

the P-wave velocity. We shall come back to this point in Section 71.2.3-

11.1.5 THE FAR-FIELD SPECTRUM FOR A CIRCULAR CRACK THAT STOPS

So far we have considered only cases in which the crack grows with a constant velocity.

The results gave us some insight into the slip function expected for a shear crack and also

some understanding of its elastic near field. But to understand its far field, we must solve a

more difficult problem in which the growth of the crack is stopped.

Let us consider a circular crack that nucleates at its center at time / : 0, expands with a

constant velocity u, and suddenly stops at a radius r". Up to the time of stopping, t : rc/u,

the problem is self-similar and the slip function given in (11.30) for u: u gives the exact

solution. If we freeze the motion at this instant, we get the kinematic model depicted in

Figure 10.10, for which the compact far-field solution of Sato and Hirasawa (1973) is given

in equation (10.27). This freezing of motion is unrealistic, because it violates causality. At
the instant of stopping, the points inside the crack have not yet sensed the termination of
crack growth. The slip function of another kinematic model, proposed by Molnat et al.

(1973) and shown in Figure 10.12, is more plausible; and the ramp-function slip at the

crack center is quite appropriate, although the slip function at other points should have a

square-root rise, as proposed by Boatwright (1980).

The high-frequency asymptote of the far-field displacement spectrum was determined

by the form of the slip function in space near the crack tip, as discussed in Section 10.1.6.

For the step-function rise, the asymptote is expected tobe a-312, and for the square-root

Äse, a-2. As discussed in Section 11.1.3, the cohesive force smooths these singularities

over the length of the end region. The rupture velocity divided by this length will give the

upper limit of frequency to which the asymptote is applicable.

Because of the difficulty in dealing with multiple diffraction at the edges of the crack,

no analytic solution is available for the elastic field of a growing crack that stops. Bur-

ridge (1969) used a numerical solution ofthe integral-equation representation ofthe prob-

lem to solve some finite in-plane and anti-plane cracks. A similar method, originated by

Hamano (1914), has been used by Das and Ak:, (I911a). Finite-difference or finite-element

methods have also been used for similar problems by Hanson et al. (I91I), Dieterich

(1913), and Andrews (1915). Here we shall outline the work of Madariaga (1976), who

used a finite-difference method to calculate the far-field seismic spectrum from a grow-

ing circular crack that stops. As we shall see in his results, the finite mesh size and some

smoothing procedures introduce an artificial end region similar to that due to cohesive

force.
We shall use the same notation and coordinate system as for the elliptical crack in

Section 11.1.4 (Fig 11.7). We shall again assume that the stress drop on the crack occurs

only in the zr3 component. Similarly, tyis zero on the plane x3: O, and u 1 and u2 are zaro

outside the crack on the plane 13 : 0. The boundary conditions orr -t3 : 0 are therefore
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T12: -Pn I-rr 
^'" I forr<min(u/.r.).

T23: u I
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(rr.37)
ur: uz- 0 for r > min(u/, r"), and

733 : 0 for all r

(po is the stress drop, as discussed in more detail in Section 11.2).

The circular shape of the crack, which has a final radius of rc, suggests cylindrical

coordinates (r, Q, ") as the most convenient system to study the problem. We can rewrite

the boundary conditions (11.37) as

< min(ut , r 
") 

,

tt, : Lt|:0 for r > min(ul, r"), and

Trr: O for all r'

These boundary conditions have a simple sinusoidal azimuthal dependence. Conse-

quently, we find that the @-dependence of displacement components is either sin @ or cos @.

They can be written as

ur : u(r,z,t) cosQ, u6: u(r,z,t) sinS' Lt'z: u)(r,z,t) cosQ-

The corresponding stress components can also be written in the same form:

tr, :Err(r,z,t) cos 0, rM:EEq(r,z,t) cos Q, r"r: 8""(r, z,t) cos0,

rr, - Err(r, z,t) cos Q, 116 :Er6(r, z,t) sin$, t"r : E"q(r, z,t) sin Q.

Three components of particle velocity, ü,ü,w, and six stress components make up nine

unknowns, for which we have a system of nine first-order differential equations: three equa-

tions of motion and six equations from Hooke's law (the stress-strain relation). Denoting

partial derivatives by a comma followed by the variable with respect to which the finite

difference derivative is taken, the nine equations can be written as

t,,:-ps.cosQl forr
T6": Pg SLfr Q l

pü,t: !o>,,),, + !(D,o - Eoo) r 8,",",

pü,t : ! or,r),, + ! (E,o - Eoo) * E 
"Q,,,

pü.t : ! o>,"),, * )r,r t E,,,",

E,,,t : ()" * 2p)ü,, + X(ü + ü) /r * )"w,,,

8,,,t: )'ü,, + x(ü + ü)lr + (r + 2p)ü,,,

EQQ,: )"ü,r + Q +2p)(ü * ü)lr + ),w,",

E,öJ: laü,, - p,(ü + ü)lr, E,0,,: lrü,"- pü/r, Err,,: pü,r+ trtü,r.
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FIGURE 11.12
Grid-point assignment for each

of nine stress/particle-velocity
components.
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where .1., u arc the Lam6 constants and p is the density. We have to solve these equations

subject to the following boundary conditions on z :0:

xrr: -Eqr: -po for r < min(ut,r"),

for r < min(ut, r"), and

for all r.

The slip components A,u, and A.u2in the original coordinates can be written in terms

ofaandualz:0'.

Lrt- 2u cos2 ö - 2u sin2 6, Lrz- fu -l u) sin2Q.

In the case of self-similar cracks studied in the preceding section, Aa2 vanishes. In the

present case Lu2 does not necessadly vanish but is found to be practically negligible; i.e.,

u - -u. so that

Lut- 2u : -2u (11.38)

Interestingly, Aar is independent of @.

Madariaga (19'76) solved the above problem by the finite-difference method using a

so-called staggered grid in which the velocities are defined at discrete times k Ar and the

stresses at times (k + il Lt, for integer values of k, where Al is the time-grid interval. The

spatial grid-point assignment for each of the nine stress-particle velocity components is

showninFigure 11.12.

Figure 11.13 shows the slip function Lu(r,t):u(r,*0'r) - u(r,-0,/) at several

points on the crack. The rupture starts at / :0 and expands with velocity 0.98, where B

is the shear velocity. The slip is measured with psr"l lt as the unit. The time / and radial

distance r'are normalized to r.fa and r", respectively, where cv is the P-velocity. The

slip function in time is shown at the center (r : 0) and at four other points at intervals of

0.2 r". At each position for which the slip history is shown, an arrow indicates the time of

arrival of P-waves, originating from the perimeter of the crack at the instant the rupture
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FIGURE 1 1 .13
Slip function at several dis-
tances from the center on the
circular crack plotted against

time. See text for explanation
of symbols. [From Madariaga,
r976.1

stops. Figure 11.13 also shows the static slip expected at the center, r:0. This level is
low compared to the dynamic solutions for r < 0.4 r", indicating a significant overshoot of
dynamic slip. When the dynamic slip reaches a maximum and its velocity becomes zero, the

slip is held fixed. (This would actually occur if static friction were large enough.) A closed

circle indicates the time of slip arrest at each point. The broken curve at the initial rise shows

the square-root function expected for the analytic solution. The numerical solution shows a

less sharp rise because of the smoothing. This is an example of the effect of the artificially
introduced end region discussed earlier.

The far-field displacement waveform corresponding to the slip function Aa, was given
by equation (10.13), which in ourpresent notation is
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{ rn
s

o u.)
a

afx,t): f"

I
g(x. ro) - eI@K/c I

o;, ((,_ R-14'v\) ,t

where y is the unit vector pointing to the receiver, ( is the position vector of dX, and c is

the speed of P- or S-waves. Writing the Fourier transform of Lü{(,t) as Lü{t, at), the
far-field displacement spectrum can be obtained from equation (10.15) as

Lü {C, a) expl-i co (€ . y) I cl du.

In our case, since dX : r dr d$ and Au, is independent of @, as shown in (11.38), we get

I
sin0cos(@ -öül dö.

J

property of a Bessel functionwhere we have used 4 .y : r sin 6 cos(@ - do). Using the

given prior to (6.7), we find

S2(x,a-r) :riaRfc 
fo", 

a, Lü1?,r, [,*rlrT

lo'" 
, a, Lüy@,r;4(rg rite)S) (x, rr) :2r ei'R/' (l 1.39)
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FIGURE 11.14
Far-field spectra lA(x,a,l)l for
P- and S-waves in the case of
rupture velocity u :0.9f . [From
Madariaga, 1976.1
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Corner frequency, /r./P

This equation shows that the far-field displacement spectrum is a Hankel transform of
Lü 1(r , ar). As discussed for a more general case in Section 10. 1 .3, the far-field spectrum

can recover the slip function only for wavenumbers less than af c,becatse I sin 0l < l for
real 0.

The numerical solutions for A.ü{r,r) are Fourier-transformed in t and Hankel-

transformed in r to find the far-field spectrum S2(x,a.r) by (11.39). Figure 11.14 shows

the resulting spectra, lA(x, a-l)l for P- and S-waves at three receiver directions from a cir-

cular crack with rupture velocity u :0.9 F (0 :0 corresponds to the normal to the crack

plane). The spectra are flat at low frequencies and decay roughly as o-2. If the nucleation

phase determines the high-frequency asymptote, we should have obtained rr.,-3. We must,

therefore, conclude that the stopping phase dominates the high-frequency spectrum, and

the power of asymptotic decay is more like 2 (rather than like 3) in the case of a circular

crack that suddenly stops.

The corner frequencies of the spectra were determined by the intersection of the low-

frequency level and the high-frequency asymptote. They are indicated in Figure 11.14 by

a closed circle for S-waves and a square for P-waves. The results for corner frequencies

for various directions 0 and rupture velocities are summarized in Figure 11.15. The corner

frequenciesaregiveninunits of Blr"forrupturevelocities 0.6P,0.1 B,and0.9B. Although

the corner frequency increases with the rupture velocity, the variation is not very strong for

u : O.9l)

- 

P-v'rgygg

---- J-w3ygg
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FIGURE 11.15
Corner frequencies of P- and S-

waves plotted against radiation
direction for various mpture
velocities. [From Madariaga,
1976.1

the range ofrupture velocity considered here. The average values ofthe corner frequencies

over all directions, for the case of u : 0.9 F, are given by

f! fi"Hz):0.3291r, 4s {tn Hr) :0.2rfl lr,

for P- and S-waves, respectively. The above equations predict considerably lower corner

frequencies (by about a factor of 2) than Brune's ( 1970) formula, which was derived from a
simple kinematic approach and which has been widely used in the interpretation of observed

seismic spectra. The corner frequency for P-waves is higher than for S-waves, as expected

from the earlier result of Molnar et al. (1913) for kinematic models with a similar slip

function (see Figure 10.12 and Section 10.1.6).

11.2 Dynamics of Spontaneous Planar Rupture Propagation

One of the most challenging problems in seismology is to predict the occurrence of an

earthquake and the resultant seismic motion from the study of physical properties of rocks

in the epicentral region and the tectonic stress existing in the region. In order to approach

this problem, we must go beyond the treatment of rupture propagation in the preceding

section, in which the nucleation, propagation, and stopping of a rupture front are arbitrarily
prescribed. There are three imporlant lines of work to be carried out before we solve this

problem. First, we must study properties of fault-gouge material, such as the specific surface

energy, the length of the end region, and the static and dynamic values of friction and their
distribution in space. Second, we must determine the tectonic stress acting on the fault
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zone. Third, we must be able to predict the entire rupture phenomena from beginning to

end solely on the basis of the initial stress condition and material properties of the fault
zone. In this section, we shall consider the last aspect of the problem for an idealized case.

We shall concentrate on how the stress distribution and the fracture criterion determine

the movement of a crack tip, and (consequently) the slip function. For simplicity we shall

confine our attention to planar shear cracks in an infinite homogeneous medium (so that the

normal stress is unchanged by the rupture process-see Problem 10.2). We start with the

case of an anti-plane crack, following the pioneering work of Kostrov (1966).

11.2.1 SPONTANEOUS PROPAGATION OF AN ANTI-PLANE CRACK:
GENERAL THEORY

Using the (x, y, z) coordinates shown in Figure 10.19, we define the crack as

x1 <x<x2; -oo<z<@, andy-Q.

For an anti-plane case (Section 10.2.3), only the z-component of displacement ur(-r, ),, /) is
nonzero, and the only nonvanishing elements of the stress tensor are rzx : 1t (Dw /öx) and

rr, : Lt(8w l8y). The problem is two-dimensional, with no dependence on z. The equation

of motion in this case reduces to the wave equation

where B : J pTp is the shear velocity.

Suppose that initially the crack is absent and the body is in equilibrium with an initial
state of stress o0. We shall take this initial state as the reference state and measure the

displacement relative to this state. The total stress is then o : o0 + t , where the incremental

stress r is derived from u by Hooke's law. Initial conditions are that w and 0w l0t are zero

for / : 0. When the crack is formed (i.e., when a displacement discontinuity develops across

the crack), the traction on the crack drops to the dynamic frictional stress. The only changing

component oftraction on the crack (y : 0) is or, and it changes from its original value o$
to a new valu e, say of;".We shall equate the stress drop ol"@ ,01 - o!,@ ,0, r) to p(x , t).The
appropriate boundary condition for traction on the crack for the above choice of reference

state is then given by

Tyz: -plx,t) forxl<x<x2, !:0, (11.41)

In order to find the boundary condition outside of (x1, x2) on 1' :0, we first need to

establish thal w(x, y, /) is an odd function of y. This is done by writing the solution of
equation (11.40) as

| 32w ö2w E2w
I

-------:-- ^ -r ^,f' Att }xz 0y'

.: I lAf.,k) exp(-iatt * ikx - vy) cto ctk

: 
| | 

Al;,, k) exp(-ia;t * ikx * vy) dr,,t dk

(11.40)

y>0

y<u,
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where u : Jk2 * ,u2 / Bz and Re u > 0 because of the radiation condition. Continuity of
traction rlz across y:0 then gives

üt(atk): -ü(atk),

so u.r(x, y, /) must indeed be an odd function of y. Secondly we note that an odd function
ofymustbezeroaty:Qifitiscontinuousthere.Sinceuriscontinuousaty-0outside
the crack, it follows that

w(x,y,t):Q X <X1,x2<x,y-0, (rr.42)

Equations (lI .41) and (ll .42) together give what is called a mixed boundary condition

on y - 0. Because of the symmetry, it is sufficient to obtain a solution only in the half-space

y<0.
To solve this boundary-value problem, let us start with the representation theorem

(2.43), using the Green function that satisfies the stress-free condition on the surface y :0.
Since displacements and stresses are independent of z, the relevant form of (2.43) is
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where G33 is the displacement at (xo, !0, /s) in the direction perpendicular to (16, y6) for a

line source at (x,0, r) in the direction perpendicular to (x, y).
Such a Green function, entailing only S.F/-waves, can be obtained by first finding the

Green function G for a full space corresponding to a line body-force impulse located at

(x ,0, t):

w(xo,!0,,r: I: o, l* G+:"@o,y0,t0;x,0,t) 7.3/d",0,t) dx (rr.43)

a2G a2G a2Gp--p ^ , -tr- -ä(xs-x)ö(16)ö(ro-r).016 ox6 oyo

Apart from differences in notation, this is the equation (6.42) that is solved by (6.43), and

for our present purposes we obtain the full space solution as

,tar-'l'* 4/Pl
G(xo,yo,ts:x,0,t):

,lu, - t) -
2r trt,R

where R2 : (/o - t)2 - l(xg - D2 + y20l/ P2 and Hf I is the unit step function. Since the

full-space Green function G, with a source on y - 0, satisfies the stress-free condition at

)o : 0, the Green function Clf' tor a source on the free surface )o : 0 is merely 2G , where
the effect of reflection is taken care of by doubling the amplitude. That is,

cff"(ro, yo,to;x,0, r) : 2G(xs,ys,ts;x,0,t). (rr.44)

Another way to obtain (1 1.44) is to use reciprocity and the result given in Problem 5.6 for
Sl/-waves recorded on a free surface.



568 Chapter 11 / THE SEISMIC SOURCE: DYNAMICS

-to:-g-x)lf
FIGURE 1 1 .16
All points within So can

influence the displacement
at (r0, /o).

In terms of the traction T3 - trr: t (x, f ), say, for all x ort ).r : 0, we can write the

solution for displacement ur by putting 2G (x(), t0', x , t) into the representation ( 1 1 .43) as

tu(x6.-vo. ,o): * Ilr# o, o' .vo'o'

where S is that part of the xr-plane which lies inside the cone

P2(to_ t)2 - (xo- x)2 - yo2 > 0 0 <t < to.

For YO : 0-, we obtain

I f f t\x.t)dxdru(xo.0.to):rt, ll116
(11.46)

where 56, shown as the shaded area in Figure 11' 16, is the triangle

P2(tr-t)2 - (xo_ x)2 > o o <t 3to.

Since we do not yet know r(x,t) for the whole area of s0, equation (11.46) does not

immediately give the solution. To find z we can use (ll.42), to obtain the following equation

forxg < xt and x6> x2i

tf4:q
I I s^ ,[tr1,- /)2 - (xo - xPlP2

t (x , t) is known in some parts of the above integration region 56, shown in Figure 1 I .17'

where the loci of crack tips are indicated by xr(t) and x2Q). The subregion 51 lies inside

the crack, and z(x, r) is known there from (11.41). We also know that t(x,t) is zero in

the subregion So - Sr - 52, for which x > x2(0) I Bt,because any disturbances from the

crack have not yet reached this subregion. The value of z(x, r) in subregion S, is unknown'

(11.4s)
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FIGURE 11.17
r(x, r) is known in S,, but
unknown in Sr. It is zero
inSe-Sr-Sz.

Thus, as long as ,56 does not intersect x1(/) (when the disturbances from the left crack tip
have not yet reached the observation point), for x6 < x, and x0 > x2we have

tt +:ff P(x'ttdxdl-. (r.+?)
r r s2 \/ft,- ttr -Txo-;F/F - I l t,ffi' tr''+/'

To solve this integral equation for t (x,l) in .lr, we make the following transformation:

t: Gt - i/Jt, ry: (pt + ")/"D.
(tr.48)

Then (1L47) can be rewritten as

f _-s- f' rG'ntdn: ['o -:+ ["" ry (r.4e1
l -xrrot1rt t/4- ( Jnr,Ct ,no-,j J-rrtlt/J2 JCo- < I -C ,n0-,1

where ry2(O is the solution of

tjz-E:'tr.r(")!\.
\ ,/zB 1

which defines the position of the right crack tip in terms of ( and 4. The integration limits
for ( and q canbe found from Figure 1 I . 18, and (11.49) will be satisfied if

[', t((.q)dn : [','t' pt..rtt_L.
J4rt() t/40-n J-| ,/40-rl

(11.50)

Equation (11.50) is in the form of Abel's integral equarion for t((,4). The solution is
described in Box 9.3, and in our case we find

r((s.ttst:!+ [" -y ["'u' pt(o.rtt-L.
T dno Jqltot ,/qo- 4t J $ " J,jt-,t
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FIGURE 1 1 .18
Change of integral vari-
ables from (x, t) to ((, n).

Since

dnt

.'no - ,lr.n1- 
't

the above equation reduces to

.'++) 
l;::;,["Jlz

: s1n-'(,

r(10,4d: (11.s 1)

The path of integration is along ( : h, which corresponds to the path t - ts: 1x - xs) I fl
in x/-coordinates. Transforming back to ,r/-coordinates, and referring to Figures 11.17 and

11.18, we obtain

[""0' ur(n.rrffi or.
1 to \o-\

plx, to+ ("{ - *d I Pl@ o* (11's2)
xo-xI.':,,,

+t- I \ 
-. \^0r r0/ - rJa- xrfq

for xo > x2(ts), wherc t2 is the solution of

Fto - xo: Ftz - x2(t).

In other words, 12 is the time at which the crack-tip locus x2(/) intersects the integration

path. The above expression is valid for the time interval 0 = /o = [xo - x1(0)J/B. A similar

result may be obtained for the region x0 < xt for the time interval 0 = /o . lxt(O) - xs)l F'

To determine r (xs, ts) for later periods, additional subregions of So with unknown t (x, t)

appear, corresponding to repeated diffraction of the waves at the crack boundary.

Equation (1I.52) shows that the stress r (xs, ts) becomes infinite when the crack tip

arrives at the receiver, so that xo: x2Qo)' At any given time ro prior to arrival' the distance

between the crack tip and the receiver is xs - x2QÖ. Using the stress-intensity factor K

defined in Section I 1.1.1, r (x0, ts) near and ahead of the crack tip can be written as

K
tt-t^.t^, 

-.

'u u 
,/2nlxo-x2(rs)l

(11.s3)



On the other hand, as can be seen from Figure 11.19,

and therefore
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rrcune 11.19
Integration path for
(1 r.ss).

(11.54)

xo- x2(t2) - B(ts- t2),

xr(ts) - xr(t) - *2(tü(to- t),

xn - xr(t)__y_.= -I_*z\to\lp.
xO - x2\r2)

uKz It: u /

K :zJ trc(r - u21B\t/+

5 

- 

f*t ,.tv: rl lJt-ulp I pIx,t - (xz- x)/pl--
\ 7t Jxr_fr JXz- x

571

Comparing (I1.52), (11.53), and (11.54), we find that

u[- *r1to1JB 1,r0o\ rtvK:-- , ,r*.to-1x2ftü - xllfi-fr (ll.ss)
Jn /2 J *sr;-Btn " 

Jx2$s) - x

near the crack tip, where x6 - x2(t2) - x2(ts). The integration path is a straight line, shown

connecting lts,x2(ts)) and [0, x2(ts) - fto]in Figure 11.19.

In Section 1L.1.2, we showed that the tip of an anti-plane crack moving with a subsonic

velocity u absorbs energy at arate given by

(1 1.15 again)

Expressing the surface energy required to create a new unit area as G, we have

Combining this equation with (11.55) (and dropping the subscript 0 from /6), we obtain

xt(tl - pto
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or

I"_,,

w((o,no):*ll

ptx. r - (x2 - xtt tri# :,t-4,rc (l-#)"^ . ( r r.s6)

where u : *zQ). This equation, first derived by Kostrov (1966), gives the velocity of the

crack tip for given p(x, t) and G. Equation (1 1.56) holds only when

?x, ) -

l^' Plx.r - rx2_ x)lFFft'- {z1t"G'
J x"-Bt - J"z - '

Otherwise, the crack tip does not move.

Once the locus x2(/) of the crack tip is determined, z(xo,/6) can be calculated by

equation (11.51). Then we can use (11.45) to determine the displacement at any point. In

fact, the displacement inside the crack can be determined using only the stress drop p(x, t)

inside the crack. To see this, we transform the variables (x, r) to (( , ü by equation ( 1 1 .48),

and rewrite (11.46) as

r(t,q) d( drt ony-0-J1ßi-Zr'u-
Next, we divide the area of integration into four parts, as shown in Figure 11.20. In 51 and

S:, -z ((, 4) is given as the stress drop p((,4). In 52, t ((, ri is unknown but is determined

by equation (11.51) using p((, ry). In the remaining parts of So, r((' 4) vanishes'

Fromequation(11.50),forapoint (tyry) closetothecrack-tiplocusbutoutsidethe

crack, we have

[r, r (<r 4) dq _ ['r'" 
p((r 4t d4 :0.

Jarrlt 'nt- 4 J-(r J4- 
'1

Our integral with respect to 4 for the areas 51 and S, is exactly of the above form, with

4o: 4t. Thus the contributions from 51 and 52 are zero. The only contribution comes from

53, so that the displacement on y : 0- is

u((s,4s) :äl;",,p1:ffi (11.57)

where ( : (zQi is the locus of the crack tip in the ((, a) plane. The above equatlon, glvlng

the fault slip (2u) as a function of stress drop p((,4) and crack-tip location (z(4), was used

by Ida (1973) in a study of spontaneous ruptufe propagation that is one of the examples we

take up in the next section.

11.2.2 EXAMPLES OF SPONTANEOUS ANTI-PLANE CRACK PROPAGATION

Let us find how the equation of crack tip motion, (11.56), is solved for some simple

examples.



BOX 11.3
The s tre s s - int e ns ity fact o r as s o c iat e d w ith c ohe s iv e forc e alone

Here we shall show that equation (11.55) can be used to derive (11.19) for the case ofa
crack tip moving at constant velocity.

Let the coordinate in the x-direction in a frame moving with the crack tip at a velocity
u be x'. Then x' : x - xz(t), where x2(l) : constant + u/.

We have previously defined p as the stress drop ol" - ol" But if a cohesive force is

considered, as in (1 1.1 8), the stress on the fault plane becomes o;, + o", so that the stress

drop is o$ - of, - o., i.e., it is augmented by an amount -o.. The effect of the cohesive

force is therefore to add a stress concentration, with the stress-intensity factor derived from
(11.55) by replacing p with -o". The integration is limited to the region -d < x' <0 in
which o. f O, and all this range is included in the integration limits of (11.55)'

As can easily be seen from the figure,

, P 1ldx: 

- 

axß-u

Therefore, equation ( 1 1 .55) is transformed to

I- r0 dx'K:-,1 "lo.(x'\n.
\ n J-a ' t/-x'

which is the result used earlier in (1 1.19). Note that K is independent of u in this case

--1----

x r(to )

x2ft) d: üt
(crack tip)

Integra
path

1z(n) or q'(1)

il4)
4

5;),t/ '\':3' \/\ \\
So 51 s2-S3 t.

FIGURE 11.20
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A SEMI-INFINITE CRACK

Consider an unbounded body under a uniform shear stress ol,. A crack appears instanta-

neously at t :0 over the half-plane | :0, x < 0' Assuming that the dynamic friction is

zero, a stress drop of oN, occurs instantaneously for ! : O, x < 0. We shall find the position

r, (/) of the crack tip / > 0 using the equation of crack-tip motion. Since

P(x,t):60, forx <x2G),

we have from equation (11.56)

(11.s8)

The left-hand side here is equal to2ol"^/fi. The above equation cannot be satisfied for t

smaller than t. given by

2ol,Jp4: J2wG, (11.s9)

and the crack tip does not propagate until time /". Once this time is passed, the crack-tip

motion is governed by equation (11.58), i.e.,

:(ryy''.
Solving for i, and integrating with respect to / from /c to /, we find

The crack tip starts moving att : tcwithzero initial velocity, rapidly reaching a terminal

velocity B. Figure 11.21 shows the motion of the crack tip for different /". The solid lines

correspond to the Irwin criterion in which the critical stress-intensity factor is assumed to

be a material constant, independent of rupture velocity (see Problem 11.3). The step-like

curves are obtained by a numerical method that is discussed later.

A SEMI.INFINITE CRACK THAT STOPS

The above classic example given by Kostrov (1966) was extended by Husseini et al. (1975)

to include the stopping of crack-tip motion. The crack-tip motion can be stopped by placing

a barrier of high surface energy along the fault plane or by limiting the prestressed region

to a finite size. In either case, the following condition is imposed on the stress drop p(x, t)
over the initial semi-infinite crack:

p(x,t):O forx < -aandt >0,

x2e): ft _ frt"f,* ,,_,, (;) t]

:po for -a<x<x2(t) andr>0,
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FIGURE 11.21
The crack-tip location -r2 as a function of time for various values of 2., where Tr:at"ld, o is the

compressional wave velocity, /" is the rupture stafting time defined in (11.59), and d is the grid length

used in the numerical solution described in Section 1 1.2.3. S is the parameter of a fracture critedon

used in the numerical solution, and 1 + S : S"i (".$ - "$1, 
where ,Sc is the critical stress difference

defined in (11.78). Broken curves correspond to the criterion ofconstant surface energy, and solid

curves to the criterion ofconstant critical stress-intensity factor. fFrom Das and Aki,1977a.l

where p0 is a constant. This is intended to simulate a finite crack without introducing

complex multiple diffractions at crack edges. For a given p0 and specific surface energy

Gs aI" x: 0, a must be greater than Bt, so that the rupture can be initiated. From (11.59),

the condition is

/r"t t?,*

FnGo
u2-

2p3

The rupture can be stopped by making G increase with x. For example, consider a linearly
increasing surface energy

,a

G(x) : (1-t mx)Go

From equation (11.56), we get

t2iQ): B- - tlG + mxr;z
l\-r r .a + t?(I + mx)2

(.x, + a)2 / Bz - tlll + mx)2

x2- Pt > -a

x2- pt < -a.-e (x, + a)21 B2 + t?(l + mx)z

(1 1.60)
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The stopping position of the crack tip, xy may be obtained from the second equation in

(11.60) by setting i2(t):0. Then

u-8t^
"t- m\t,- I'

Since the solution -rs must be positive, the rate rz of increase in specific energy must be

greater than (Ft")-r for the crack tip to stop. The motion of the crack tip can be obtained

by solving the differential equation (1 1.60).

Another simple case of a barrier is a step-like increase in G:

G:Go 0<x<b,
G:Go+AG b<x.

In this case, for x2() > b, we have

@2 + d2l B2 - tJ + (LG I Gü)2

(r; 
"rt, U, + t?lr + (LG lGü12'

and setting iz:0 we can solve for the stopping position of the tip'

x":\t,lI+ (LG/Gil- a.

Since x, > b, an inequality has to be satisfied for the stopping to occur:

(11.61)

tlr.62),,"(r-ä)

If we put this condition into equation ( I 1 .61), we find i, to be zeto or negative' Since i2

cannot be negative physically, i, must vanish and the equality holds in (11.62). The equality

means that x": b, or that the crack tip stops immediately at b if condition (11.62) holds.

If not, the tip will propagate indefinitely beyond b. For example, if G6:104 etg/cmz,

(a _l b): 1 km, po : 10 bar, and F:3 x 1011 dyn/cm2, then aG must be about

lol erglcm2 or greater for the rupture to stop. Furthermore, the larger the length or the

larger the stress drop, the greater AG must be to stop the rupture'

An alternative way of stopping a rupture is to limit the size of the prestressed region'

For example, consider the case in which, for / > 0,

pQc,t):0 forx<-a
:po -a<x<xz(t)<b
-0 b<x.

The equation of motion (11.56) gives the crack-tip velocity as

. lf (xz,Df - p2**': 
lf (*"'t)lo + P4'
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xz< b,x2- Pt > -a

x2-Pt<-a

xz> b,xr- Bt > -a

x2- Bt < -a.
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where

f(xz,t): lF
:!E*a

From the final equation, the stopping position may be obtained by setting iz : 0. Then

(a -l b)2
i- 

- 

-

" 4pt.

For example, if b - a - B t., then r 
" 
- b (l * f ) ; but if b >> a - Bt, then x, - ä( I -l b I 4a).

Thus, if the length b of the prestressed region is much greater than Bt": p.n Gsl2pfr. ttrere

will be a considerable overshoot of crack extension into the initially unstressed region. For

typical values of the surface energy G measured in the laboratory (- 10a ergs/cm2), and

zo : 10 bar, Bt" is only 50 cm. However, as mentioned in Section I 1 . 1.3, the real value of
G for earthquakes may be around 108 erglcm2, which corresponds to values of B/" around

5 km. Since G is expected to increase with earthquake magnitude because of increase in

the zone of microcrack formation and plastic deformation, overshoot may not play a very

important role in practice.

Srrp-nnrs-oepENDENT BoUNDARy coNDITIoN oN THE FAULT

If there should be any constitutive relation between the stress and slip, or between stress and

slip rate, it can be incorporated into our equation ofrupture propagation. For example, Ida

0913) assumed that the stress olz on the fault is related to the slip rate Aü by the following

equation (see Fig. 11.22):

:{F-Jxr-b
: Jx2+ a * Jxr- b

o,.- : v A,ül

d,
:fr- "yz

for Arir < u^

for Aü > u.,

b-a ßt.+-+'-24

11 1.63)

where or" is total stress acting on the fault plane, i.e., the sum of the initial stress o$ and

the stress increment rn, due to crack formation. The slip rate Ari.' is equal to -2w for üt

evaluated on y - 0 (which is the side of the fault for which we have studied displacement;

see, e.g., (11.45)). Although the above constitutive relation is not very realistic, it does

display a transition from ductile to brittle behavior. This may grossly simulate the behavior

of an earthquake fault on which creep and dynamic failure are both occurring.

Suppose we start with an initially unstressed fault. As the tectonic stress increases,

slow creep may occur across the fault, and the slip rate may increase in proportion to the

stress. When the slip rate reaches a certain yield limit uc, the stress may suddenly drop to

the dynamic friction level o$, creating an earthquake.
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FIGURE 11.22
Constitutive relation between the stress across the fault
plane and slip rate given by (1 1 .63). [From Ida, 1973;

copyright by the American Geophysical Union.l

To incorporate the above constitutive relation into the equation of rupture propagation.

we make use of

w((0, 11ü : r;
\/ zlr LL

(11.57 again)

from which we can find the slip Au : -2w inside the crack in terms of the stress drop p

inside the crack.

Let us assume, as before, that a semi-infinite crack suddenly appears for x < 0 at

l:0. Since, for / < -xlB or 4 < 0, we expect no disturbance from the crack tip, the

slip will be uniform under a uniform initial stress o$. ffre slip for 4 < 0 can be expressed

by equation (11.57) in terms of a uniform stress drop po, which is to be determined by the

constirutive relation (11.63). Since the integration region is bounded by t :0, (2(D : -n
for 4 < 0. Then equation (l 1.57) can easily be integrated to give

-l fh -4: ['n Pt(' qt aq 
.

l1,,rn, ,f E,)= J-c Jtlo- n'

- | fco d( fro podn _u((6' 40): [2ru J-r,, ßu < l-, 
-1ru 

r-
Q^ tyyo' ony-0-

where ( 1 I .48) has been used. From equation ( I I .63), we have

or,:ol,- P0:y Lw:-2yw:zy7pylP fot Bt <-x' (II'64)

This equation determines the stress drop po occurring for Bt < -x in terms of the initial

stress and the material constants, i.e.,

,,.: Of;'

| + 2vFltt

For ßt > -x or q > 0, we can determine the stress dtop p((,4) in essentially the same

way as the above by solving (11.57) and (11.63) simultaneously. We must, however' use

numerical methods to solve the integral equation (11.57). Since the integration range is

limited to 53, shown in Figure 11.20, the discretized integral equation can be solved in

steps, in each of which the unknowns are p((,,4) and w(t,, ry) at one discretized point

u" Slip rate, Aü
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(n,m).Since p((n, 4) and Lü: *2ü((,,rt) must be related by equation (11.63), the

two equations can determine both p and Lw at the point.

In solving (11.57), the crack-tip location (z(ry) must be known. Recognizing that

t : l\t - x21\ltD and ry - 1Bt + x2Q)JlJl on the crack-tip locus, we have

dtr_d(rldt _F**z(t).
dry daldt f+tt(t)

Then the equation ( 1 1 .56) for the motion of the crack tip can be rewritten as
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u\2

'utl

fl,r:-, ^- 
t - \x2 - .'t pt#l

The above equation is valid only when

f xz d r
I' plx.r - txz- x)lßF#-> r/2pnC.Jxr-ft ^/xz- 

x

otherwise the crack tip does not move and x2(t): 0. In that case,

"\2 |

dq

The condition (11.66) can be checked by a numerical integration of discretized

p((,,ry). Then, either (11.65) or (11.67) is used to determine the locus of the crack

tip by

bQt*+t):6?t)*#or,

where Ar7 is the grid spacing in r7.

Ida (1973) made numerical calculations for various choices of the parameterc uc, y,

and o$, and found two distinctly different types of rupture propagation, depending on the

parameter values. One type is a smooth rupture propagation in which, once the rupture

starts, the crack tip accelerates smoothly and approaches the shear velocity. An example

of smooth propagation is shown in Figure ll .23. Here the time / is measured in units of
t,:rp,Gl2frAfr. Ttris is the delay time given in (11.59), which corresponds to the stress

drop given in (11.64). We discussed the magnitude of /. in earthquakes in the previous

example of a semi-infinite crack that stops. The distance x is measured in units of Bt, and

the numbers in Figure 11.23 represent or,(x, r) in units of p0. The parameters are chosen

asy -2tLlf ,u":2.Ix (fpol t,.),andol,:0. Inthecaseof smoothrupturepropagation.

the cracked region (for which onr:0 in this case of o$ : 0) extends in both directions.

For a slightly different choice of parameters, the mode of rupture propagation can be

quite different. The result is shown in Figure I I.24 for y : 2 LL I P, u. : 2.6 x (B p 
s I p'), and

olr:0. The rupture propagation is quite irregular; the crack tip moves for a short distance,

then stops, restarts, and repeats the process. The fault, once cracked, can be quickly healed,

f2n pG)z
tl l 65)

(1 1.66)

(rr.61)
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+ 0.26

I

I

' 
o.ro

- 0.04 - 0.02

rroune 11.23
Plot of orr(x, t) in units of po. A smooth propagation occurs in this case. lFrom Ida' 1973; copyright

by the Ainerican Geophysical Union.l

because the slip rate drops below u". Thus the healing front follows the crack tip with a

similar speed, making the effective crack length always roughly constant.

As discussed in Chapter 10, the high-frequency spectrum of seismic waves in the far

field consists primarily of contributions from rupture nucleation and stopping points. We

therefore anticipate a long duration of complex high-frequency waves from an irregular

rupture process such as shown in Figure 1I.24. On the other hand, a smooth earthquake

like the one shown in Figure 11.23 will genefate large long-period waves, with distinct

shorl-period phases associated with the initial start and the final stopping points.

Ida's result indicates that the smooth type of rupture occurs when p'l B (the impedance

associated with plane shear waves-see Box 5.4) is only a small multiple of p6/u"' Thus,

roughly speaking, the smooth type of fault propagation occurs when the impedance in the

creep region is higher than in the elastic region. For a given value of u", the smooth type of

rupture occurs at lower frictional stress {.

ConrsroNrsss cRAcK

Burridge and Halliday (lglD considered an anti-plane crack that nucleates along a line

at a constant depth in a homogeneous half-space. The crack propagates vertically'both

uoward and downward. Their fracture criterion is a special case of (11.56), in which the
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0.22

- 0.04 * 0.02

FIGURE 11.24
Plot of on,(x, r) in units of po. A case of inegular propagation. [From Ida, 1973; copyright by the

American Geophysical Union.l

specific surface energy G is set to zero. From (1 1.56), the condition that G : 0 can be met

either by

",-a

or by

581

f') ptx.r -\x2- xtlpt=:0.
Jxr-Fr t/xz- x

(l 1.68)

Equation ( 1 1 .68) is possible only if p (x , t) changes sign along the above integration path.

If (11.68) is not met, the crack tip must propagate with the shear velocity B. To slow down

a propagating crack, therefore, one must postulate a negative stress drop. Taking the -r-axis

vertically downward, Burridge and Halliday considered the stress drop given by

p(x.l):po(l-r'/b'). (11.69)

where p6 is a constant. The crack tip propagates downward and past the depth b with
the velocity B until the contribution from negative p matches that from positive p to
satisfy equation (11.68). Then the crack tip moves deeper with a velocity determined by



582 Chapter 11 / THE SEISMIC SOURCE: DYNAMICS

equation (11.63). Thus the stress along the fault plane above the depth b drops to a lower

value, but that below b jumps to a higher value. we shall come back to the cohesionless

fracture in the discussion of in-plane cracks in the next section.

II.2.3SPONTANEOUSPRoPAGATIONoFANIN-PLANESHEARCRACK

Let us now consider spontaneous propagation of an in-plane shear crack' As in the anti-plane

case, the crack lies on the plane ) : 0, extending to infinity in the z-direction but confined

in the x-direction between xr(t) and x2(t) at time /. For the in-plane case, the nonvanishing

displacement components are u(x,y,t) and 1)(x,y,r) (see Section 10.2.4)' As in the anti-

plane case studied in Section ll.2.l, we assume that initially the crack is absent and that

in" Uoay is in equilibrium with an initial state of stress o0. We shall take this initial state

as the ref'erence state and measure the displacement relative to it. The initial conditions are

then given bY

',_"'_n -0 for /<0.,0uöuano ar: at

The total stress is then o : o0 * z. When the crack is formed, or) on the crack drops from

o$ to the dynamic frictional stress {. Putting the stress drop { - oly : p (x., t) , the

Uä'unaury condition for incremental stress on the crack appropriate for the above choice of

reference state is given bY

trr:-p(x,t) xr(t) <x <x2(t),Y:O- (11.70)

As shown in Section 10.2.4, the continuity of u(r' y, /) and t*r(x'!' /) across y:0
leads to symmetries such that u (x, y, t) and t rr(x, y, t) arc odd functions of y and u (x' y' t )

andrrr(x,y,t) areeven functions of y' Since zn, is continuous äcross y :0'

r :0 v:0.-vv
(11.71)

We need another condition on y - 0 outside the crack. This is given by the continuity of a'

Since a continuous odd function of y must vanish at y - 0' we have

u:0 x < x1(t),x2Q) < r,):0. (r1;72)

(11.70) and (|L.12) taken togethef are amixed boundary condition or y : 0, and (11'71)

gives the otherboundary condition for all x on y : 0' Because of the symmetry' it is sufficient

to obtain a solution only in the half-space y < 0'

we shall define the two-dimensional Green functions 8,4@,l, t; c, y, z) and

Sr{x,l,t;(,y,r), for a homogeneous half-space y <0 with free surface at y:Q' 45

the displacement components a and u observed at (x,y,r) due to a line-impulsive force

appüeJ at G,y,z) in the (-direction. Then, from the representation theorem (2'43),
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since our Sxp Syq satisfy the sffess-free boundary condition, and since ryy: O on y - 0,

we have

The region of integration S is, from causality, that region of the ((, z) plane for which

o?G -r)2 - (x _ {J2 -y2>o t> r >0,

where a is the P-wave velocity. The above representation is valid also for displacements

on the crack plane y : 0-, in which we are particularly interested. In this case, the region

of integration is a triangle 56 in the ((, r) plane given by

q2Q -r)2 -(x-O2ro t>x>o,

and we write

II
u(x.y,ü: 

J J ,t*r((,t)S*{x.y.t'.(.0, 
z) d( dr,

tt
u(x,y,0: 

J J :*r(4.t)Er{x.y,t;(.0. 
r) dt dt.

u(x,0.,): [ [ t,nG,r)s*{x - (,0,t - r) d( dr,
J r so 

fi1.i3)

u(x.0. il : [ [ t*r((,t)Br1(x - (.0,t - r)d( dr.
JJS^

This notation for the Green function refers to the case of a homogeneous half-space when

source (1 , rl , t) and receiver (x , y , t) are both on the free surface. Explicit formulas fot g *1

and gr, are easily derived by Cagniard's method (Sectiori 6.4), and they are particularly

simple when y : e :0. The result for this case is I

4o2 6z _ B-z1J"r _p. I 1

8'r(x'U't)-- -<6<--rg' np72x R(o)R*(o) a P

: --L- J;r:E= \.o, (rr.j4)
n u'f2x R(o) P

, K,^l *\ 2o (2o2-B-2)J;z=A-2'/re=t-A
gyg(r.u.t):-o l.- - l- _.."r-- r\ LL \ .* / 1r p|zx R(o')R*(d)
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where o : t / x, f is the velocity of shear waves, R is the Rayleigh function

R(o) : (2o2 - P-')t - 4ozvGz - "J
R* and K7 are defined by

#)ft1

(11.7s)

Kostrov (1975) obtained an analytic solution ofthe above equation. The result, however, is

much more involved than in the case of an anti-plane crack. For example, the stress-intensity

factor given by only one integration in the anti-plane case (equation (11.55)) now requires

five integrations and one differentiation. Besides, the result is valid only for a crack-tip

velocity less than the Rayleigh-wave velocity. It therefore appears that a numerical approach

may be more satisfactory.

A sophisticated method of discretizing the integral equations (11.13) and (11.75) was

described by Bunidge (1969). However, a more conventional method, such as the one used

by Hamano (1914), reproduces Burridge's result quite closely. In Hamano's method, the

-x-axis is divided into segments of equal interval d, and each segment is presumed to take

the average value of stress and displacement over the segment. Then it is natural to replace

the point-to-point Green function S@ - 4,0,t - r) by a segment-to-segment Green func-

tion g(x; - 1i,0, t - r), which is the averaged displacement over the lth segment due to

the force distributed over the jth segment:

: II,,

I f xi+\d l2t [1i+d /2\
:^l dxl

cl' J x.-td l2t J 1.-td l2l

R*(o): (2o2 - p 2)'+4ozJ6z-a-2J02- B-2,

| | ,,nrc, 
r)94o - 4'0, t - r) d( dt

.-^" l- , ^..

ry\,-(u-^*\+ci L \ q'/ L'R

r,r(1,t)s,q(x - (,0,t - tS d( dr Y: :,'{t'- orxz(t)<x.

Kt: QB2lc?- D3

+o(r-

and c* is the velocity of Rayleigh waves (R(c*t) :0). Equation iIL74) was flrst derived

by Lamb (1904).

If t,r(E,r) were known on the whole x-axis, equation (11.73) would give the solution of

the problem. From the boundary condition ( 1 1 .70), however, the stress component (II .12)

is known only on the crack surface. Outside the crack, the boundary condition (11.72) is

a constraint on the displacement component u. Separating the region of integration So in
(11.73)intoapartSlinsidethecrack[x1(/) <x <x2Q)),forwhichz",uisknownby(11.70)'
and a part Sr, we can rewrite the condition (1I.72) as

oI Y. 
- 

t. ll t 
- 

T I
ö\".lbl!vr- sQ - (,0,t - r) d(. (rr;16)
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For 9"6 (-t, 0, r) given in (11.74), 
E 
"4@,0, 

r) can be obtained in a compact form, as given
in Das and Aki (1977 a). Using the averaged Green function, the integral equation (1 1.75)
can be discretized as
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I I P((1, r,)g'r1xi - 1j, t1, - t1)
JI
in ,S1

-\-\-_LL
jl
in ,S2

r,y(( 1, tr1 g,r(xi - ( 
1, t1, - t)

(rr.77)
Ior xt < rl (/k )

or x2\tü < xi.

The order of solving the above set of equations in Hamano's method can be arranged so that
there is only one unknown, zrr((y, z7), when each equation is solved. once 2", is determined
for the whole region, the displacement can be calculated by the discretized equation (11.13).

So far, we have been proceeding as if the locations of crack tips x1(/) and xr(r) were
known. But these locations are determined by some fracture criterion. The simplest criterion
that can be easily incorporated in the discretized formulation (II.ll) is to monitor the stress
difference between the neighboring grid points that bracket the position ofthe crack tip. The
total stress at the point inside the crack is known to be o$, and that outside is determined as

o!, + t, by solving (1I .71) for the incremental stress zrv. Thus the excess of stress outside
the crack over that inside is rr, + o!, - o"d, : r,, I p. As soon as this stress difference
exceeds a cenain limit S^. i.e..

r,y-oly+"fr>E, (1r.78)

we presume that rupture takes place. The crack tip advances beyond the point at which
the stress difference had been exceeded, and the stress at the point is set to oju. The stress
difference across the crack tip may be considered as a smeared-out stress concentration. We
know from equation (11.7) that the stress concentration takes the form

K'o: 
Jol H(x')'

where x' : x - 1)t is the distance measured from the crack tip and K'is the stress-intensity
factor for in-plane cracks. Suppose that the crack tip lies halfway between two grid points
as shown in Figure 1 1.25. Then the average stress over the grid immediately outside the tip
will be

r rdu:; 
J"

K' ,t ^ K'
ny 

- 
/_

42nx/ J2trd

In Box ll.2,we introduced Irwin's fracture criterion, which is based on the critical
intensity factor K". The critical average stress o over the grid immediately outside the tip
corresponding to K" may be written as

s.:2-L." J2trd
(rr.19)



586 Chapter'1 1 / THE SEISMIC SOURCE: DYNAMICS

FIGURE 11.25
Grid points are shown bY

X symbols.

Das and Aki (1977a) compared a numerical solution based on the criterion for S" and

an analytic solution based on the criterion for K" for the case of a semi-infinite, anti-

plane crack. Figure 11.21 shows the analytic solution as solid curves and the numerical

solution as step-like curves. The symbol T" attached to the analytic solution is the rupture

starting time /" defined in (11.59), normalized to uld as f : atrf d.For an anti-plane

crack the critical stress intensity factor K" may be obtained by setting u : 0 in (11.22),

i.e., K! :4ttG. Then, from (11.59), we have Ptc: (7Tl2)K3112"1)2.The parameter

S, used to specify the numerical solution, is related to S" by 1+ S: S"l@1"- ol).If
our assumed relation (11.79) is correct, we should find the relation between Q and S is

T": (tr/4)2(d/p)(I+ S)2 - 1.07 (1+ $2, where we take into account the assumption

ol,:O made in deriving (11.59). Figure 11.21 shows that equation (11.79) gives a good

approximation to the actual value for large S. For small S, the constant factor in (II.79)

must be slightly larger than 2. For the range of S from 0.5 to 5, the appropriate value of the

constant varies from 2.10 to 2.53. For a given S", S can be increased by making the grid

length smaller.

Thus the fracture criterion for the critical stress difference S" may be approximately

the same as the fracture criterion for the critical intensity factor, which we called Irwin's

criterion in Box 11.2. As discussed in the Box, the Irwin and Griffith criteria are equivalent

as far as the initiation of crack extension is concerned. However, for a finite rupture velocity,

the two criteria are different, and the fracture criterion by S. is not exactly the same as the

Griffith criterion, resulting in different crack-tip motions as shown in Figure 1 1 .21 .

Das (1980) extended Hamano's discretization method to determine the slip function

for general three-dimensional motion-that is, for slip in two dimensions on a fault plane

within a homogeneous whole space, radiating a mix of anti-plane and in-plane motions into

three dimensions. In some respects the problem is simpler than the analysis of shear stress

by (11.71),and the subsequent determination of fault slip, because forthe three-dimensional

problem the basic Green functions coresponding to (I1.14) are simpler. These 3D Green

functions, the solutions to Lamb's problem for a point source when both source and receiver

lie in the surface of a homogeneous half-space, become zero once the Rayleigh waves have

passed. This results in a great reduction of the memory needed to store the Green functions,

unlike the two-dimensional problem with a line source where the disturbance never ceases.

The two-dimensional problem is of course simpler in physical terms because of the reduced

number of relationships between stress and strain.
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FIGURE 11.26
Relation between shear stress and slip used by Ida
(1972) and Andrews (.1976). The static friction is
os: at this upper level of friction, instability begins
and weakening occurs. For slip greater than D, stress

drops to the dynamic friction level, oo. The shaded
area corresponds to surface energy, i.e., the work
done against the cohesive force (see Section 11.1.3).

[After Andrews, 1976;' copyright by the American
Geophysical Union.l

Andrews (L916) used Ida's description of cohesive force to introduce the Griffith
criterion (Section 11.1.3) into a finite-difference calculation of the in-plane shear-crack
propagation. He assumed that traction across the fault plane is related to the slip Az by the
following formulas (see Figure 1I.26):
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(11.80)

where ds is the static friction, oo is the dynamic friction, and D is the slip required for stress

to drop to oo. This is an example of what has come to be called a "slip-weakening" law.
More specifically, it is a slip-weakening law with a constant weakening rate. The inelastic
work done at the rupture front in excess of the work done against the dynamic frictional
stress dd is identified as the specific surface energy (for each unit surface ofnewly created
crack).

6: l1o, - oiD. (l1.81)

The boundary condition on the fault plane must next be described. When the crack is
not slipping,

öLu
O and

dt
loror+zrn1 <o(Lu);

and during slip,

0Lu-
At f0 and o$ * .,, : o(Lu, ttt" (#)

With this boundary condition, the propagation of a crack expands symmetrically in both the

*x and -x directions. The results are discussed in terms of two nondimensional numbers:
L"l L and (or- o1)l@11- o6), where oo is the initial stress o$ and L. is the critical
half-length of an in-plane Griffith crack, which can be obtained from equation (11.16).

o(Lu) * os - (o* - o6) Lu/D

o (Lu) : 6o

Lu<D,

A.u> D,



588 ChaDter 11 / THE SEISMIC SOURCE: DYNAMICS

Taking the limit as u -+ 0, the critical stress intensity factor K" will satisfy the following

equation:

G_
a

ẑ1)

IK:..
- - -j^ Irm

76 P'Bz u+o

",2

, t.ll2 t,2 , 't,-l/2('-;) -(, -#) ('-ä) (1 1.82)

(11.85)

_x?x+zrt
8p )._lu

From equation (9) of Box 11.1, the stress-intensity factor K'is related to the crack half-

length L by K' - (os - oalJTt L Therefore, the critical half-length t" is given by

r-uc 
-

8p.()" + u.)G (1 1.83)
n0, l2pl@s - oi2'

Das and Akt (1977a) solved the same problem using Hamano',s method, with the

fracturecriterionbasedonS",discussedearlier. Intheircase, L""unb""ulculatedbyputting
the value of K" obtained from (1 1.79) into K : (oo - o ) 4 r L to find

t^: d sl .. ( n.s4)'c *2@n-o072-

The other parameter, (o"- odl@' - o6), is nothing but the parameter S used in the

discussion of Figure 11.21:

,s: s" 
-1-d.-od -1- 

d,-do
o0-od oo-od oo-od

The results of calculation by the two methods agree in general, and only Andrew's result

is reproduced in Figure L1.27 . There are two distinct styles of rupture propagation. If the

parameter S is greater than about 1.63, the velocity of rupture propagation is always less than

the Rayleigh-wave velocity c*, and the velocity approaches cB as the crack length increases.

On the other hand, if S is less than 1.63, the rupture starts with sub-Rayleigh velocity.

But as the crack length exceeds a cerlain limit (which depends on ,S), the rupture velocity

exceeds the shear velocity and approaches the P-wave velocity as the crack length increases.

The critical value of S : 1.63 was obtained by Bunidge (1913), using the cohesionless

fracture criterion discussed in the example of anti-plane crack propagation (see the last

parl of Section 11.2.2). The cohesionless crack cannot propagate at velocities lower than

the Rayleigh-wave velocity because of its inability to sustain any stress singularity. It can

propagate with the Rayleigh velocity, at which speed the stress-intensity factor is zero.

Bur:ridge, however, showed that even at the Rayleigh velocity, the stress ahead of the crack

at the S-wave front may exceed the static friction if S is less than 1.63. In that case, the

admissible speed of the crack tip is the P-wave velocity. In Section 11.I.2, we concluded

from the study of energetics at the crack tip that the speed of an in-plane crack cannot
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FIGURE 11.27
Showing separate regions in
which rupture propagates with
sub-Rayleigh velocity, and with
super-shear velocity. [After An-
drews, 1976; copyright by the

American Geophysical Union.l
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exceed the Rayleigh-wave velocity. For a cohesionless crack, the stress-intensity factor is

always zero ard there is no energy flow through the crack tip. Therefore, the conclusion

from the energetics does not apply to a cohesionless crack. A more difficult question is why

the numerical solutions, which apparently involve a finite energy flow through the crack tip
(as demonstrated by the agreement with analytic solutions for such cases), show rupture-

propagation velocities exceeding that of Rayleigh waves. The answer lies in their fracture

criterion, in which the initiation of fault slip does not require an infinite stress but only a finite

stress, Thus, the stress associated with P - and ,S-waves propagating ahead of a crack tip can

cause the fault slip. Hence we may say that the super-Rayleigh-wave velocity propagation

is a consequence of finite cohesive forces.

The finite cohesive force has another important consequence on what happens when

the rupture propagates along a fault plane with obstacles or barriers. These barriers may be

expressed by a localized high value of S" defined in (11.78). Das and Aki (1977b) found

that three different situations can occur when a crack tip passes such a barrier, depending

on the relative magnitude of barrier strength to initial stress:

(i) If the initial stress is relatively high, the barrier is broken immediately.

(ii) If the initial stress is relatively low, the crack tip proceeds beyond the barrier, leaving

behind an unbroken barrier.

(iii) If the initial stress is intermediate, the barrier is not broken at the initial passage of
the crack tip, but eventually breaks due to a later increase in stress.

Ifthe barrier encounter oftype (i) occurs throughout the faultplane, rupture propagation

is smooth, generates a simple impulsive seismic signal, and results in a high average

stress drop. On the other hand, if the type (ii) encounter occurs at many barriers, rupture

propagation becomes rough, generates a long sequence ofhigh-frequency waves, and ends

up with a low average stress drop. Type (iii) propagation generates seismograms with ripples

superimposed on long-period motion. The seismic radiation becomes less dependent on

direction ofrupture propagation than others, because the slip on the central part ofthe crack

occurs more or less simultaneously, resulting in an effectively symmetric source. Similar

results were obtained by Mikumo and Miyatake (1978), who studied rupture propagation

over a fault plane with a two-dimensional nonuniform distribution of static friction.
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Thus, a variety of rupture pfocesses can be generated by distributing a number of

barriers with different strengths on the fault plane to sefve as more complex models of

actual earthquakes. The fault model with barriers is particularly important for the study

of short-period motions from a large earthquake, because it is associated with strong ground

motion in the frequency band that is most damaging to man-made structures'

Our numerical methods of solving for fault slip in this chapter have included both

finite difference methods as in Section 11.1.5, in which seismic motions are propagated

throughout a volume, and so-called boundary integral methods such as those of the present

Section 1I.2.3, in which calculations of displacement and stress are confined only to the

planeof thefaultitself (via (11.13) and(11.75)). Bizzanietal.(2001) havethoroughly

studied the slip distribution for two-dimensional in-plane shear rupture governed by the slip-

weakening law shown in Figure IL.26, and also by more general rate- and state-dependent

friction laws proposed by Dieterich and Ruina. They find the two numerical methods of

solving for fault slip lead to identical solutions if care is taken to ensure numerical stability

and adequate resolution. Their boundary integral method, developed by Andrews (1985)'

was faster than their finite difference method.

11.3 Rupture Propagation Associated with changes in Normal stress

Many times in the solutions discussed above we have made use of the fact that shear

discontinuities on a planar fault surface' in a homogeneous isotropic elastic whole space'

cannot change the normal stfess on the fault. See Problem 10.2. (This constancy of normal

stress does not mean that the original planar fault surface stays flat. In practice it warps

during slip in a fashion that keeps the normal stress unchanged.) The constancy of normal

stress simplifies the discussion of shearing stresses on the fault plane, since in practice we

can relate shearing stress via a coeflicient of friction to the normal stress. Because the normal

stress cannot change, changes in the coefficient of friction are directly reflected as changes

in the shear stress. But this simplification is lost if the fault surface is nonplanar, or if the

fault surface is itself a material discontinuity between media with different elastic moduli,

or if the fault is shallow. In the latter case, seismic motions will be reflected from the Earth's

free surface, back down into the source region. If the reflections reach the fault while it is

still in the process of slipping, then the normal stress on the fault will be changed in ways

that can influence the process of slip. In this section, we briefly review each ofthese three

possibilities for changing the normal stress'

If the fault surface is bumpy, then resistance to slip may be greater due to the possibilities

of indentation of material on one side of the fault into the other. Conceptually such a fault

can lock, and a new plane of weakness can develop nearby. Models of such an asperity can

be developed in terms of a spatially varying coefficient of friction applied over a planar fault,

so that greater shear stress is needed to accomplish slip near the location of the indentation'

But such an approach does not reproduce the fact that normal stress across the fault will

change as an asperity begins to slip. Bouchon and Streiff (1997) considered a generalized

version of the spontaneous rupture model discussed above in Section ll'2' They allowed

for nonplanar faulting by assuming that shear stress at the time of nucleation drops from its

initial static level to the value given by a dynamic coefficient of friction times the original

normal stress. For a fault with a bend, their boundary integral method allows for friction
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that varies as the dynamic normal stress changes continuously. But Tada and yamashita
(1996) have pointed out fundamental differences in behavior for in-plane shear cracks that
are nonplanar, between cracks that change their orientation smoothly from point to point,
and cracks with an abrupt kink (discontinuous change in fault normal). They found that the
notmal stress along a smoothly curved crack differs from that along a chain of line segments
connected at abrupt kinks (the chain being a discrete version of the smooth variation).

Faults that have endured numerous earthquakes over millions of years can accumulate
many kilometers of offset, bringing rocks of quite different composition-and different
elastic properties-into contact. When a new episode of slip occurs across a surface that
is also a material discontinuity, the resulting wavefields are significantly more complicated
than the usual P and s body waves. For example, head waves can propagate along the
faster side of the interface, delivering energy into the slower (more compliant) medium by
refraction at a critical angle. This energy arrives earlier and from a different direction than
would be the case if slip occurred only within a homogeneous block of the slower medium.
Ben-Zion and Malin ( I 991) showed for the San Andreas fault, in central California, that such
head waves have sometimes been misinterpreted as body waves arriving directly from an
earthquake hypocenter, leading to erroneous estimates of the hypocenter location. Weertman
(1980) showed that for a dislocation moving along a material interface at constant speed,
the change in normal stress increases with increasing dislocation velocity up to the speed
of the S-wave in the slower medium. Andrews and Ben_Zion (l9gl) used a finite difference
method for two-dimensional plane strain to study slip between materials that had a 20Vo
contrast in elastic wave speeds, and found features similar to those predicted by Weertman.
They showed that a self-sustaining and spatially naffow pulse of slip, associated with a
tensile change of normal stress, could propagate at about the velocity of the slower S-wave
speed. The direction of propagation is always the same as the direction of slip in the slower
medium.

The phenomenon of tensile changes in normal stress has also been found for slip on
planar faults in homogenous media. These tensile changes, which can be large enough to
cause separation ofthe two surfaces ofthe fault, arise in laboratory experiments conducted
by Brune and coworkers. They used foam rubber blocks in a geometry that simulated
shallow-angle thrust faulting. Mora and Place (1994) modeled the geometry of the foam
block experiments using a numerical lattice model, and also found interface waves asso-
ciated with tensile changes in normal stress that tended to separate the fault surfaces. The
reason for such changes in normal stress is presumably the interaction between fault mo-
tions on the shallow fault and motions reflected from the free surface, which cause tensile
changes on the fault plane. Brune et at. (1993) found that the observed particle motions
show several features very different from those commonly found for planar dislocations
within a whole space. Interface waves associated with fault opening propagate updip along
the thrusting fault plane, and temporarily decouple the hanging wall from the foot wall.
Seismic energy becomes trapped in the overlying wedge, and consequently the particle
motions are asymmetrical, being far greater in the hanging wall than the foot wall. The
energy becomes increasingly concentrated toward the tip of the upper wedge-the toe of
the hanging wall-leading to what these experimenters call spectacular breakout phases
when the rupture reaches the free surface. Their results suggest that the seismic hazard of
great subduction zone thrust earthquakes, and continental shallow angle thrust faults. mav
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be significantly greater than would be predicted by standard dislocation models that do not

take into account the interactions of fault rupture with a nearby free surface.

Throughout our chapters on source theory we have focused on models that apply to

individual earthquakes. For each such model we have sought to explain how its associated

fault slip and radiated motions can be analyzed. We have avoided the obvious fact that

earlhquakes occur in the setting provided by previous earthquakes. But each earthquake

changes the stress environment in which it was triggered, dropping the stress over length

scales comparable to the width and length of the fault-ruptured area. Each new earthquake,

whether large or small, occurs in the inhomogeneous initial stress established by all its
predecessors, though typically increased by tectonic loading. It is therefore of interest to

determine how the balance is maintained between large earthquakes, which presumably

tend to reduce stresses over wide regions, and small earthquakes, which introduce short

wavelength inhomogeneities into the stress field. These underlying characteristics of the

environment in which individual earthquake occur will determine the size of each new

earthquake in a sequence. The overall relationship between earthquakes of different sizes

may be governed by the principles of self-organized criticality. Earthquakes show properties

that we still do not understand. It is a challenge to bring the wide range of observed

earthquake phenomena into a complete and satisfactory framework established on basic

physical principles.
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Problems

I 1.1 If slip across a fault surface X is known as a function of position and time, is this

enough to determine completely the motions throughout the medium within which

the fault is situated (assuming no other source is active)? If your answer is "yes,"

then explain why this result is only of limited use in earthquake source theory. If
your answer is "no," then describe what else must be known about the source in
order to determine the motions that it radiates.

Suppose that, instead of the slip, we know the traction at all times on the part of
the fault surface that is undergoing slip (i.e., on X (r)). Is this enough to determine

the motion radiated away from the fault? Comment on your answer here (yes or

no) in the same fashion requested above.

ll .2 For the self-similar elliptical crack described in Sections 10. 1 .6 and 1 1 . 1 .4, show

that

a) the fault area grows like 12,

b) the average slip grows like r,
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c) the seismic moment grows like t3, andhence that

d) the far-field velocity seismogram is proportional to (r - t i H (t - /p) near the

arrivaltimet:tp.

11.3 For a semi-infinite crack described as an example in Section 11.2.2, the stress-

intensity factor K is given by

tl _ i./ßltl2 f*z dxK: trffi- J,.-u,"*'t - 
(xz- xt/P) F

_2(1 - izl illl2ro . 

^ffZ t't'' '

In that example, we derived the crack-tip motion assuming that the surface energy

G is independent of rupture velocity. Show that if instead the critical stress intensity

factor is constant (i.e., instead of G), then the crack-tip motion is given by

x2(t) : F(t - t") - Bt"logt /t"-

This curve is shown in Figure 11.21 together with the curves corresponding to

constant G.

11.4 For an in-plane tensile crack, the rupture propagation always has velocities lower

than the Rayleigh velocity, even in the case of finite cohesive force. Confirm this

conclusion by investigating the sense of stress associated with the P- and S-wave

part of the Green function appropriate for a tensile crack.


