CHAPTER 1 1

The Seismic Source: Dynamics

Seismic waves propagate in ways that are largely governed by the relationship pi; =Tj; ;
between acceleration and stress gradient, and by the relationship between stress and strain
known as Hooke’s law (2.18). But in the source region of a particular earthquake, Hooke’s
law fails. If we are to reach a quantitative understanding of the ground motions that result
from that earthquake, we need to replace Hooke’s law by some other relationship that
accurately determines stress as a function of the deformation of materials within the source
region—or, that determines deformation as a function of stress.

So far we have suppressed the difficulties of this problem, because to interpret the
seismograms from one particular earthquake in detail, within the framework of Green
functions weighted by a displacement discontinuity across a fault surface, we saw in
Section 2.5 and Chapter 3 that we all we need to know is the fault slip as a function
of space and time on the fault. See equation (3.2), with which we started Chapter 10
on source kinematics, allowing us to study the seismic motion at near and far field for a
propagating dislocation in cases where the slip function has already been specified—or at
least parameterized in a particular way. The form of the slip function was adopted intuitively
to simulate geologic faulting with the least number of parameters, preferably ones that could
be determined from analysis of the resulting seismic radiation. But unfortunately, some of
the slip functions analyzed in Chapter 10 turn out to have consequences that are physically
unacceptable.

Take the simplest case of an anti-plane problem in which a semi-infinite fault is
propagating with uniform velocity (Section 10.2.3). When the slip occurs as a step function,
the shear stress acting on the fault plane is given by equation (10.46),

zw:uﬂ_ﬂ_”z/’gz (putting x' = x — ). (11.1)
; 27 x’
We expect that the fault plane, once ruptured, cannot sustain stress greater than the frictional
stress. But according to (11.1), the shear stress has nonzero values inside the fault plane
(x" < 0), becoming larger and larger without limit on the fault plane as the crack tip is
approached (i.e., as x" — 0 from below). Obviously, then, the assumption of step-function
slip leads to a gross violation of physical expectation. In this chapter we shall develop a

537



BRI —

538

Chapter 11 / THE SEISMIC SOURCE: DYNAMICS

variety of better alternatives to step-function slip, with the principal aim of finding fault
motions that not only are kinematically satisfactory for shear failure, but are also associated
with plausible stresses on the fault plane.

In considering the failure of Hooke’s law for a particular earthquake, we can regard
the fault plane—which will eventually rupture—as a surface of weakness. For example, as
stress slowly rises in the source region due to tectonic processes, we may assume that the
capacity of frictional stress to resist the growing shearing stress is eventually exceeded. It
is the pre-existing fault surface that fails rather than another surface, precisely because the
fault is relatively weak. But how does the failure actually take place? As stress rises during
the tectonic loading process over a period of perhaps decades, does strain generally stay
proportional to stress, or is there a tendency for some ductility (in which strain rate would
be nonzero at fixed high stress, even if the stress were constant)? Even if there is no ductility,
does strain stay proportional to stress right up to the instant of failure, or do materials in the
source region exhibit a nucleation process in which strain departs slightly from the linearity
predicted by Hooke’s law, just prior to failure? If there is a nucleation process, then what is
its time scale and its dependence on stress relative to a critical stress? If failure occurs and
stress levels on the fault surface drop from their static frictional values as fault slip begins,
then how quickly do they drop, what is the value of frictional resistance during the actual
process of fault slip, and how do stress levels continue to change as fault slip comes to a
halt?

These questions on material properties have long been the subject of laboratory ex-
periment. Many observations are summarized by Coulomb’s law of friction, stating that
frictional resistance to one object sliding over another is proportional to the net force bring-
ing the two objects into contact. The expression of Coulomb’s law in seismology is that
the frictional shearing stress between the two faces of a fault surface is proportional to the
normal stress. As reviewed by Scholz (1998), in the standard model of stick-slip friction it
is assumed that sliding begins when the ratio of shear stress to normal stress reaches a value
w,, called the static friction coefficient. Once sliding begins, frictional resistance falls to a
lower value so that the coefficient of dynamic friction, ug, is less than . An instability
can result, leading to slip propagation and all the phenomena of fault rupture and associated
radiation of seismic waves.

It has been found experimentally that g is greater the longer the fault surfaces have
been in contact without sliding. Furthermore, the value of 114 depends on the relative velocity
with which the fault surface slides. The general subject of fault constitutive laws has been
developed extensively by Dieterich and others (see Dieterich, 1981; Ruina, 1983; Sleep,
1987, Marone, 1998; and Dieterich and Kilgore, 1996). As we shall see in considering
particular examples, there is often a question as to whether the details of some particular
relationship between fault slip and fault stress can be inferred from properties of the resulting
seismic waves, or whether these details entail time scales and length scales too short to
measure from the radiated signals. In the latter case, progress will more likely come from
extrapolation of phenomena measured in the laboratory—over scales on the order of a meter
or much less—up to scales on the order of a kilometer or much more, as needed in application
to earthquakes of significant size.

This chapter studies simple models of dynamic faulting in two main sections, followed
by a shorter section that outline features of more complicated models. Thus in Section 11.1
we shall suppose that the rupture velocity has been prescribed (usually, we shall assume
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it has some constant value). We obtain a simple relation between slip and shear stress on
a fault plane for anti-plane problems. Then we describe the energy balance at the rupture
front for anti-plane and in-plane faulting, and introduce the concept of cohesive force. As a
useful illustration of rupture propagation that originates from a point (and therefore involves
both anti-plane and in-plane motions), we look at the case of a growing elliptical fault, for
which the radiated motions are known in detail. As an example of a fault that grows steadily
(from a point) and then suddenly stops, we describe a growing circular fault with known
final radius and use an important numerical procedure to obtain the far-field motions. In the
second main section, we recognize that shear failure is a spontaneous process and that the
velocity of rupture is itself an unknown and probably varying quantity, to be determined
as part of the solution to the problem in hand. The rupture-velocity history is known for
a variety of anti-plane problems and for certain in-plane problems. Our intent in these
Sections 11.1 and 11.2 is to develop analytical methods that provide ways to explore a
variety of relationships between fault stress and fault slip or slip velocity.

In consideration of the dynamics of a particular earthquake, it is vastly simplifying to
restrict attention to situations in which normal stress is unchanged by the faulting process.
But as we point out in Section 11.3, there are a number of important situations in which
normal stress is itself changed by faulting.

11.1 Dynamics of a Crack Propagating with Prescribed Velocity

11.1.1 RELATIONS BETWEEN STRESS AND SLIP FOR
A PROPAGATING CRACK

In order to find an appropriate slip function for a crack propagating with a constant velocity
v, we shall first find a relationship between the stress and slip on the fault plane for a
propagating anti-plane dislocation.

Let the slip function Aw(x") be an arbitrary function. We shall express Aw(x’) by a su-
perposition of step functions, as shown in Figure 11.1. An arbitrary Aw(x’) can be written as

0 0
Aw(x’):—// aa%déz—/ iaAé—wH(i—x’) dé. (11.2)

The step-function slip H (¢ — x) with tip at x’ = ¢ will generate a stress component
7, according to equation (11.1) given by

V1= v/B
x =&
Multiplying by the step height —(3 Aw/d¢) d¢ and integrating over & from —oo to 0, we
find that the stress due to the slip function Aw(x’) is

g / 2/52 [0 .
N_ 5 d Aw/o¢ _ M l—v/ﬂ/ Aw
000 =2 /1- v/ /_oo—x,_é L et

(11.3)

T /, :i
(8.0 =~

where A is the slip velocity.
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FIGURE 11.1
Approximating an arbi-
trary slip function Aw(x")
by a superposition of step
functions.

» X' = x — vt

For the in-plane problem, a similar relation is found between the shear stress 7., on the
fault plane and slip velocity Aiw. Applying the same superposition to equation (10.65), we
get

2 2 /7 g2)2 0 -
=2 [ v — M} [ Aa
' v J1=12/p2 | Jeo & =X
In both (11.3) and (11.4), we see that the shear stress on the fault plane is a constant times
the Hilbert transform of slip velocity.

A function and its Hilbert transform are very closely related. From Box 5.6, we see that
if g(x) is the Hilbert transform of a function f (x), then these two function share a common
amplitude spectral density, and their spectral phases differ by 7 /2.

Thus the shear stress and the slip velocity on the plane y = 0 must share a common
amplitude spectral density apart from a constant factor, with a phase difference of /2.
Furthermore, the slip velocity must be zero outside the crack (because no slip occurs there
yet), and the shear stress must be zero inside the crack (assuming no frictional stress for
simplicity). In other words, we want to find a pair of functions f(x) and g(x) that satisfy

f()=0ifx>0, gx)=0if <0,  and g(x):l/ f© ge.
T =y € — &

(11.5)

From tables of Hilbert transforms, we find that the following choices of f(x) and g(x)
satisfy these three conditions:

_ H(—x) _ —H®X)
f@x)= = and  g(x)= il

It is easy to show that they satisfy the integral in equation (11.5) by extending ¢ to a complex
plane and making a branch cut along the negative real axis (Fig. 11.2). The integral along
AO will be equal to the one along O B because of the opposite signs of /—E& on the two
paths. For x > 0, the residue evaluation of ¢ = x gives g(x) =1//x, and for x <0 the
integral vanishes because the pole is outside the contour.

Thus we find for our mechanics problem that the boundary conditions for a moving
crack are satisfied by a square-root singularity in stress ahead of the crack tip, and another
square-root singularity in slip velocity behind the crack tip. The square-root singularity in
stress is well known for a static crack.
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Im ¢
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FIGURE 11.2
Integration path for (11.5)
when (&) = H(=&)/=E.

By integrating the slip velocity, we find that the slip itself is proportional to +/—x’ for
x" < 0. We can now summarize results for the anti-plane case as

Av K
Aw = AV —x"H(—x"), Aw = H(—x"), and g e H(x),
2/ —x' 2 2w x!

11.6)
where (

A1 —0v2/B2
K=<ZIr %
and the in-plane case as

A'v
Au=A'V—x"H(—x"), A = H(—x), and T
2/ —x'

H(x'),
27

(11.7)
where

pAB? [VT=va? — (1= 2242 [ T= 027

2

K =V2r

v

The coefficients K and K’ are called stress-intensity factors in fracture mechanics.
Note that K is zero for v = 8. And since

K'=—3V2mwpud' BR(1/v) /1 - v2B2,

where R is the Rayleigh function introduced in (5.56), we find that the stress singularity
ahead of the in-plane crack is zero for rupture speed v = cg, the Rayleigh wave speed.

In the preceding chapter, we studied seismic motion from a propagating dislocation
with step-function slip. Now that we have found a more appropriate slip function for the
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Box 11.1

Stress singularities for static, in-plane, and anti-plane shear cracks of finite
width 2a.

The equilibrium equation for the anti-plane displacement w(x, y) is given by

I e =0, (1)

For a crack plane defined by |x| < a, y =0, and a uniform stress 7, acting at x — oo and
y — o0, the boundary conditions for a stress-free crack are

a
_p x| <a,y=0, (2)
dy
and
rOO
w— 2y as x,y —> 00. 3)
"

(The reference state for displacement is here taken as the stress-free state, in contrast with
many of the dynamic solutions in this chapter and the previous one, where the reference
state is the static strained state just prior to crack growth.)

Equation (1) can be satisfied by the real or imaginary part of an analytic function of
z = x +iy. Itis easy to show that the imaginary part of

T
fx+iy)= j’o\/ (x +iy)* —a? “

satisfies equations (1), (2), and (3). So
w=Im f(x +iy)

T .
= Totm{[(x2 = y2 — a?)? + 4x2y2 V4012, ®)
w
where sin 6 = ny/\/(x2 — y2 — a?)2 + 4x2y?. We then have
T
w=-2+a% — x2 y=+40,|x| <a
U
7 (6)
=——2/g% — x2 y=-0, x| <a.
u
The stress on the plane y = 0, but outside of the crack, is
a
,u—w :tw—L x| > a. @)
ay i x2—a?

Here we find the square-root singularity of stress at both ends of the crack x = a. The
stress intensity factor is 7 /7 a, and grows in proportion to the square root of the crack

(continued)
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BOX 11.1 (continued)

length a. The above solution was given by Knopoff (1958). A solution for an in-plane shear
crack was given by Starr (1928), with the following results:

T,
u:_@ﬂ,/ﬂ_)@ y=+40,|x| <a
2 ur+p)

A+2
= Joo At M va*—x? y=-0,|x|<a

2 ph 4w

(3)

and

Ty =T ————— y=0,|x| > a. ©)]
a

crack in the form /—x’ H (—x’) (instead of H ( —x")), we shall re-examine the motion in the
vicinity of the fault. Using equation (1 1.2), we can express the slip function for the moving
crack as a superposition of step functions:

. a_ A% 1 3
AV—XH(_X)—Z/_OOﬁH(é x)déE.

Since our system is linear, if the seismic motion corresponding to unit step-function slip
H(—x') was f(x', y), then the motion g(x', y) for the moving crack will be

ra AL
g, y)=— — " —& y)de, (11.8)
2 —00 _6
Using this relation, we can obtain the motion and stress around the tip of the anti-
plane crack from the results previously obtained for a step-function dislocation. Putting
equations (10.47) and (10.45) into f(x/, y) of equation (11.8), the particle velocity w and
stress component 7, for the moving crack can be written as

0
1 d
u'):ﬂ Yy de and <t

:M/O Ly —&de
A Joo /=& (0 = E)2 4 y2y2 Y 4x

—o0 /=& (&) — E)2 4 p2y2

where y = /1 — v2/B2. Both integrals can be evaluated easily by using the contour shown
in Figure 11.2. Now poles are located at ¢ =x"%iyy, and the evaluation of residues at
these poles gives

o Av ! | Av YV TR —x o
w=— — - ) J
4 \2i/x' —iyy 2i/x" +iyy 42 m
Apy L Ay YVETF 7T+ o
r - = . .
T4 oWty 2 —ivy) 42 Jriigne
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In-plane Step-function
shear crack dislocation
11 1
— _H(x' .
g T =
Particle
velocity of
transverse p—— — X
component
FIGURE 11.3 JX'H(x') + const. log|x|
Particle velocity and Displacement
displacement normal of
to the fault plane for uransyerse
t
a shear crack and for B
a step-function shear
dislocation.

In contrast to the case of a step-function dislocation, the peak amplitude of particle velocity
decays with distance from the fault as 1/,/y. The motion for the crack is smoother than for
a dislocation. Before discussing the difference in their spectra, we shall point out a drastic
difference in the transverse component of particle motion between the in-plane crack and
the in-plane step-function dislocation (“transverse” here means “perpendicular to the fault
plane”).

The transverse component of particle velocity for the in-plane step-function dislocation
(corresponding to ¥(x, 0, ) in (10.63)) is of the form f(x', y) = 1/x" along y = 0. Using
(11.8), the corresponding solution for the crack is (see Fig. 11.3)

0
8(x’,0)=l/ NESUN - x>0
2 J-0o/—E X' =&

=0 x <0,

which has the same form as the shear stress 7, of the in-plane crack obtained earlier.
Remarkably, the transverse component of particie velocity is zero inside the crack. The
corresponding displacement will then be constant inside the crack, and of the form +/x’
ahead of the crack. In the case of step-function slip, the transverse component of displace-
ment shows a symmetric impulsive form (~ log |x]), as can be seen in Figure 11.3, which
qualitatively agrees with the observed form for the Parkfield earthquake, as discussed in
Section 10.2.1. The solution for the crack, on the other hand, does not show the symmet-
ric impulsive form, but an asymmetric step-like form, /x" H(x') + constant, as shown in

Figure 11.3.
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Equation (11.8) shows that g(x, y) is the convolution of J(x,y) with LH(—x)//=x.
For k = wp > 0, the Fourier transform of the latter function can be obtained as

0 0 .
) 1 1 .
1 1 e—ikx g e—ikx gy (changmg the Path to the.
2 Joo A —x 2 Jing af—x negative imaginary x-axis)

o0

; 1

2 1l Hr/4/ - —ky d 4 _

= 5e e y (putting x = —jy)
? 0 Y

o
_ em/4/ e+ g, (putting y = z?)
0

_ 17 a1 T gin/4
2V k 2V wp

In the frequency domain, therefore, g(x, y) (the seismic motion caused by a propagating
semi-infinite crack) has an amplitude spectrum proportional to 1 /~/@ times the spectrum of
S (x,y) (the seismic motion caused by a propagating dislocation with step-function slip),
and the phase is shifted by 7 /4. This phase shift in the x-coordinate corresponds to a delay of
7 /4 in the time axis. Because the | /+/o factor will attenuate hi gher frequencies, the motion
caused by the propagating crack is smoother than the motion caused by the propagating
dislocation with step-function slip.

11.1.2 ENERGETICS AT THE CRACK TIP

As the crack tip propagates, slip occurs across the fault plane. Neglecting friction, the
traction on the fault plane is zero over the part where slip is occurring. It seems, therefore,
that there is no work done on a crack except for the work against friction. A closer look,
however, reveals that a finite amount of work is indeed done at the crack tip per unit distance
of its propagation. Since the crack tip is moving, it is not obvious how to calculate this work.
Let us first derive a general formula for two-dimensional cracks following Freund (1972).
To obtain compact equations we shall use x; (i =1,2,3) coordinates, put the crack plane
at x, =0, and let its tip propagate toward the +x;-direction with velocity v. As shown in
Figure 11.4, we consider an external surface S, fixed to the solid body, with the crack surface
S, already formed and an internal surface S enclosing and traveling with the crack tip.

In the volume V bounded by these three surfaces, the body obeys the equation of
motion, Hooke’s law, and strain—displacement relations:

piji =T T =il (11.11)

e = %(ui,j—kuj’i), (11.12)

where c; 4, 7,5, ¢, j» and u; are the elastic moduli and components of stress, strain, and
displacement. We assume that body forces are absent.

On the surfaces S, and S|, traction T;is givenas T, =, jMj» Where n; is the outward
normal of the surface of V.

545



546 Chapter 11 / THE SEISMIC SOURCE: DYNAMICS

FIGURE 11.4

The rate of work of the tractions on S,, and the rates of increase of kinetic energy and
strain energy in V, are, respectively,

: . d i
W:f T.i; dS, K:—/ Lo dV, U:i/ 57€,;dV. (11.13)
S, dt Jy dt Jy 1

The energy flow g into the crack tip can now be obtained as a limit of the flow into the inside
of S;:
g=W — lim [K + U].
$—0

Since S, is moving along with the crack tip, the region V' in equation (11.13) is time-
dependent. Thus both K and U consist of the change in energy occurring inside V and the
flux of energy through the boundary S,. These contributions are

K= / oLl dV+/ 2,ou,u,vmdS

U:/ Tij z;dVJr/ QT,JLtl]vndS (usmgr Tji)s
1%

where v,, is the normal component of velocity of a point on S;. Replacing the first integrand

for U by (t;; ;) ; — T, ju; and applying the divergence theorem to fv(fz]”z) -dV, we find
g= /Se Tu;dS — Slliglo l:/V(puiiii T ) dV + /Se+SC Tn i dS
+/ (T;J”]”z + 3T Uy + zpzliitivn> dS:| (11.14)
St

= —lim [ (zni; + v, + Sotiiyv, ) dS,
St_>051 e ! 21]1]n Nt a1

/ ?‘
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+9 ,
X' = x — vt

FIGURE 11.5

where we used (11.11) and (11.12). The contribution from S, is zero because v, = 0 and
because the crack surface is traction-free. (As mentioned in the beginning of this section,
we chose to neglect the effect of friction here.)

Now, coming back to the coordinate frame (x’, y) moving with the tip, we shall choose
arectangular surface shown in Figure 11.5 as §;. The side lengths of the rectangle are 24 in
the x-direction and 2¢ in the y-direction. If we shrink the width ¢ to zero, the contribution
from the sides x = =6 is zero. Since v, is zero on the sides y = +¢, equation (11.14) is
simplified to

8
g=lim [ TG.0)-[a',+0) —i(x, ~0)] dx’
—=0J_s

Thus, by putting equation (11.6) into the above integral, the rate of work for the anti-
plane case is obtained as

AvK . (P H(=x)HX)
o= im —_— dx
242w 80 )5 /—x' /X’

and, using equation (11.7) for the in-plane case, as

- A'vK' . 8 H(—x") H(x')
22w -0 ) 5 —x' A
The integrand in the above formulas is zero except at x’ = 0, yet the integration gives a

finite result because the integrand behaves like a Dirac delta function. To show this, let us
consider the following integral:

dx’.

*© HXNH(x —x) dx’:/x dx’'
0

e ————— =7mH() (see Box 9.3).
—00 J)?«/x—x’ xS x — %
It then follows that

® HX H(—=x) |, e
dx'=nH() = —.
o Sy S =mHO =5
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Thus, for the anti-plane crack, the rate of work done at the crack tip is

AvK K? 2
P :”__/ sy (11.15)
V2 4 2u 82

and for the in-plane crack

-
2§12 2 2\?2 2
prma— 1-%-(1-%) / - . (11.16)
8 up” o 28 B

The above result may be obtained without using a value of H(x) at x = 0. From equations
(11.9) and (11.12) for stress and particle velocity of the anti-plane crack, the first term of
the integrand of (11.14) is given by

vK?y
22+ 2y

2ryz(x/, N, y) =

where K is the stress-intensity factor defined earlier and y = /1 — v2/B2. Putting y = ¢

into the above formula and integrating from x’ = —§ to x' =6, we get
. K K?
¢ = lim Jim tw4<i>:1—, (11.17)
£=08—0 T LY 3y 22Uy

which confirms the result given in (11.15).

In the case of the anti-plane crack, the energy flow at the tip is zero when K =0,
i.e., when the rupture velocity is equal to the shear velocity. In the case of the in-plane
crack, it is zero when the rupture velocity is equal to the Rayleigh-wave velocity. Thus,
at these velocities, energy needed for creating new surfaces of the crack cannot be sup-
plied to the crack tip. In this sense, they are the terminal velocities of crack propagation.
Equation (11.16) shows that if the rupture velocity exceeds the Rayleigh-wave velocity, g
becomes negative. In other words, the crack tip becomes a source of energy flow instead
of a sink. This is physically unacceptable, and it appears that the speed of the in-plane
shear crack cannot exceed the Rayleigh-wave velocity. This conclusion, however, will be
modified in Section 11.2.3, where we discuss rupture propagation in a medium with finite
cohesive force.

11.1.3 COHESIVE FORCE

The solutions for stress and particle velocity around the propagating crack tip obtained in
Section 11.1.1 are still not realistic, because they both become infinite at the crack tip. All
materials have a finite strength and cannot withstand stress beyond some limit. The way to
eliminate the singularities is found by using the concept of cohesive force, introduced by
Barenblatt (1959). This force is distributed inside the crack near the tip, and it opposes the
external stress.
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Box 11.2
Fracture criteria

Since most materials fracture when stressed beyond some critical level, it is natural to
describe the condition for fracture by a critical applied stress, or strength of material. It
practice, however, it has long been known that the fracture strength of a given material
varies greatly. The theories built around the concept of strength as a material constant were
for a long time incapable of accounting for observed diversity in fracture behavior.

A breakthrough was made by A.A. Griffith in 1920. He assumed the existence of flaws in
material in the form of cracks. Creating new crack surfaces requires an increase of the free
surface energy. This energy must be supplied from the surrounding medium for the crack
to extend. Griffith’s fracture criterion is based on the balance of consumed surface energy
and the supply of mechanical energy for an infinitesimal virtual increase in crack length.
In this section, we have just calculated the rate of supply of mechanical energy to the crack
tip when the crack tip moves at a constant speed ((11.15) and (11.16)). In Section 11.2.1,
we shall use the Griffith concept of energy balance in deriving the equation of motion for a
crack tip, equation (11.34).

An alternative approach to fracture mechanics was formulated around the concept of
stress-intensity factor by G. R. Irwin and his associates in about 1950. It was found that the
Griffith fracture criterion is equivalent to the existence of a critical stress-intensity factor.
If the stress-intensity factor exceeds the critical value, the crack will extend. We shall call
this the Irwin criterion.

In equation (11.15) and (11.16), we have shown that the energy flow into the crack tip
is determined by the stress-intensity factor K or K’, and the rupture-propagation velocity
v. Therefore, at the initiation of crack extension, when v = 0, the energy flow and stress-
intensity factor are uniquely related, demonstrating the equivalence of Griffith and Irwin
criteria. The equivalence relation is shown explicitly in (11.22), setting v = O there for an
anti-plane crack and also in (11.82) for an in-plane crack.

For a finite rupture velocity v, both the Griffith surface energy and the critical stress-
intensity factor may depend on v. In Sections 11.2.2 and 11.2.3, we shall consider two
fracture criteria. In the Griffith criterion, we assume that the surface energy does not depend
on v; in the Irwin criterion, we assume that the critical stress intensity factor is independent
of v. Figure 11.21 compares the motion of the crack tip obtained by the two criteria.

Let us consider the case of an anti-plane crack, and put the total traction on the ruptured
surface (x’ < 0) as

0,.(x',0) =0l + 0 (x"). (11.18)
Here GSZ is due to dynamic friction and acts all over the crack, but the cohesive force (per
unit area) o (x’) is nonzero only in —d < x” < 0, where d is the length of the end region, as
shown in Figure 11.6. The distribution of the cohesive force will generate a concentration
of 7, ahead of the crack tip, with the stress-intensity factor given by

[2 0 o)
— /= : dé. 11.19
T [d \/__é : : )
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» x' = x — vt

End
region

FIGURE 11.6

This result is derived later in Box 11.3, in a discussion of equation (11.55). The original
stress singularity due to the external stress may be eliminated if we choose the cohesive
force o (&) that satisfies the condition

2 [0 o0&
K=.-= déE. 11.20
,/nfwd = S (11.20)

With this choice of o,(¢), the stress component o,,(x’,0) will be finite and continuous at
the crack tip. Since the slip velocity Aw is the Hilbert transform of the shear stress times
a constant, as shown in equation (11.3), the singularity of A is also removed if the shear

stress becomes continuous there.

If d is small, the elastic field due to the cohesive force is limited near the crack tip and
does not affect the field outside the immediate vicinity of the crack tip. Then the energy
flow into the crack tip through the external surface will be the same as given in (11.15) for
the case of no cohesive force. This energy flow is absorbed to create a new surface of the
crack. Expressing the surface energy per unit area as G, we have

g =2Gv, (11.21)

where the factor 2 accounts for both faces of the crack. From (11.15) and (11.21), we find

2
:f_u/ /1_7‘6&2 (11.22)

(A similar relation may be obtained for an in-plane shear crack using (11. 16).)

In order to get a rough estimate of the highest frequencies involved in seismic motion
caused by propagation of a crack, we shall assume that the cohesive force is uniformly
distributed over the end region. The corresponding stress-intensity factor is

\/7/51 \/__ f;_ 2d, (11.23)
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where o is the cohesive force per unit area. Putting (11.23) into (1 1.22), we find

202d v2
G=="¢ -5 (11.24)

This is a relationship between important quantities that determine the seismic motion around
the crack tip, about which we know very little. In general, G, 0., and d may depend on the
rupture velocity.

Since d is the measure of distance over which slip is resisted, the larger d is, the
slower the slip at the initial stage of faulting. Contrarily, we expect higher slip velocity
and acceleration as d gets shorter. The characteristic time constant 1y may be given by d/v:

_ 2
by = djv = THOV1= /%) (11.25)

Zov

14 1s the time constant that controls the high end of the seismic spectrum. Static experiments
on rock samples in the laboratory give G on the order of 103 erg/cm? and o, on the order of
10° dyn/cm?. For a rough estimate, we shall assume that their order of magnitude remains
the same in the dynamic case, so that for 8 = 3.5 km/s, v =3 km/s, and & = 3 x 10!
dyn/cm?, we get

td = 1079

Thus we expect radiation of seismic waves with frequency up to a gigahertz if the laboratory
values are applicable.

In the actual field situation, G may increase with crack length. The stress around the
crack tip increases as the crack length increases. (As shown in Box 11.1, the static stress-
intensity factor increases for larger cracks.) Consequently, the volume of the region of
microcracks and plastic deformation will increase. This region will absorb energy, making
the apparent value of G greater for larger earthquakes.

The highest frequency contained in usual earthquake records is on the order of 100 Hz.
Assuming that the cohesive stress o, in the actual fault gouge is on the order of 108 dyn/cm?,
the value of G corresponding to 7; = 0.01 s will be around 108 erg/cm? from (11.25), which
is many orders of magnitude greater than the laboratory values.

The physical meaning of cohesive force becomes clearer if we write it, instead of
equation (11.18), in the form of constitutive equations, such as

0,,(x,0) =0l + o [Aw(x)]  x'<0 (11.26)
or
0,,(x',0) =05 + o [e(x")] x' <0, (11.27)

where ¢ is the plastic strain in the fault gouge and Aw is the equivalent slip between the fault
surfaces corresponding to the plastic strain. If the thickness of the fault gouge is b, we may
take Aw = be. The specific surface energy G can be expressed as G = % fooo o.(D)dD,
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where the factor | accounts for the two surfaces of the crack. Relation (11.27) may be
determined by laboratory experiments on the stress—strain relation of rock samples and
field studies of gouge thickness, and it may be appropriate to allow o, to depend on Aw
as well as on Aw. Once the relation is known, the slip function can be calculated by an
iterative method. We start with an initial guess of the slip function Aw(x") and obtain the
corresponding cohesive force from (11.26) or (11.27). Then we can calculate the stress-
intensity factor K from (11.20). At a distance sufficiently far from the tip compared with
the scale of the end region, the cohesive force no longer governs the slip function, which
is determined instead by macroscopic crack parameters such as the shape, length, and
stress drop. Knowing o, for —oo < x" < oo, the slip velocity can be obtained by the
Hilbert transform (see equation (11.3)). The resulting slip function can be used as the
second trial function for revising the cohesive force. The iteration proceeds until the slip
function converges to a final solution. Ida (1972, 1973) used this method to calculate the
slip function and its time derivatives for various cases of the cohesive force diagram (o,
as a function of slip [Aw]), assuming a semi-infinite crack with constant stress drop as
the macroscopic model, and discussed the maximum acceleration and velocity in terms of
this material property. Andrews (1976) extended Ida’s work and incorporated the cohesive
force in a finite-difference calculation of crack propagation (discussed in Section 11.2.3 and
Fig. 11.26), combining numerical analysis of rupture propagation with laboratory results
on rock mechanics.

11.1.4 NEAR FIELD OF A GROWING ELLIPTICAL CRACK

In Section 10.1.6, we studied the far-field body waves from an elliptical crack growing with
constant velocity and keeping the same shape. Neglecting the stopping phase, we found
that the initial rise of far-field displacement grows parabolically, being proportional to the
square of time measured from the onset. The corresponding acceleration showed a finite
discontinuity at the onset. In this section, we shall consider seismic motion in the near field
of the growing elliptical crack, for which a Cagniard solution is available.

Let us assume initially a state of uniform stress ¢” and suppose that a plane shear
crack nucleates at the origin at time ¢ = 0. The fault surface S(¢) is defined in Cartesian
coordinates by the ellipse

S() = {x3 =0:x7/u® + x3 /v < tz} ,

which (see Figure 11.7)) has axes growing steadily at speeds u and v, each less than (or
equal to) the shear-wave speed . The shear stresses across plane x; = 0 are influenced by
waves emanating from the point of nucleation, but after arrival of the rupture they drop to
new values prescribed over S(¢).

To describe the problem further, let u be displacement from the initial (prestressed,
static) position, with T as the stress tensor due to u (so that o + 7 is the total stress).
Within an infinite homogeneous medium, u and 7 have certain symmetric properties with
respect to the crack plane x; = 0 (see Problem 10.2): from equation (10.39) or an argument
similar to the one used in the in-plane problem (Section 10.2.4), we find that 733, u;, and
u, are odd functions of x; when the discontinuity across the crack plane is restricted to
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FIGURE 11.7

shearing. These quantities must therefore be zero at x; = 0 wherever they are continuous
there. Thus we have the following boundary conditions:

733 =0 everywhere on  x3 =0 (11.28)
and
Uy =1u,=0 on x3=0 butoff S(z). (11.29)

Burridge and Willis (1969) found the following simple solution for the slip function
across a growing elliptical shear crack:

2 2
<”1> :<Z> 2B 0and SE)

2 2,
L (11.30)

:(O> on x; = 40 but off S(z).
The elastic field generated by this slip function under the conditions (11.28) and (11.29)

indeed gives a shear-stress jump (7,3, 7,3) that is constant in time and space on S(¢); 7,5 is
proportional to @ and 7,5 is proportional to b, where a and b are particle-velocity components
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at the center of the crack, as can be seen from (11.30). For simplicity, we shall take the
xj-axis in the direction of maximum initial shear, so that no drop occurs in the stress
component T,5. In this case, b = 0 and the slip component u, disappears. On the moving
part of the fault, 7,5 is constant, and we can think of the total shear stress 0103 + 7,3 as being
proportional to 0303 via a dynamic coefficient of friction according to the Coulomb law of

friction.

Following Richards (1973b, 1976a), we shall take the following steps for computing

the elastic field radiated from the growing crack:

@

(ii)

(iii)

Fourier transformation for x; and x,; Laplace transformation for :

f(xpxz»xyt) - f(kl,k2=k3ss)

where f is any dependent variable (such as a displacement component) of interest.
Boundary conditions on x; = 0 are thus transformed to

_ dmwauv
(s2 + ku? + kZv)?’

33=0, us =0.

Transformation of the wave equation and use of potentials to derive algebraic expres-
sions for u(ky, k,, x5, 5). The double Fourier inverse transform is taken, yielding the
forward Laplace transform as an explicit double integral over the whole (k{, k,) plane.
A rotation and stretch of the (k|, k,) plane to variables (w, ¢) is carried out via the de
Hoop transformation

k= (s/a)(q cos ¢ — w sin ¢),
ky = (s/a)(g sin ¢ + w cos ¢),

where « is the P-wave speed. The Laplace-transformed P-wave component of dis-
placement at position x then has the form

uP(x,s)z(l/sz)/oo dw/ dq F(g, w, $)e™", (11.31)
0 —00

where F is known, t = t(q, w,0) = [—iq sin 6 + /1 + g% + w? cos 9] (R/a), and
the spherical polars (R, 6, ¢) for x are shown in Figure 11.7. It can be shown that
only the positive real g-axis is needed for the integration in (11.31). There is a similar
expression for the S-wave component.

Application of Cagniard’s method, turning the g-integral into the Laplace transform
of the w-integral, so that displacement in the time domain is recognized as a single
integral over w. A complication arises because of singularities of the integrand F, as
shown in Figure 11.8. This is a diagram of the complex g-plane, and it shows that
between the real-axis path of integration needed in (11.31) and the Cagniard path (on
which the exponent (g, w, ) in (11.31) is real), the integrand has a pole. It turns
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FIGURE 11.8
. There is a pole at ¢, near the Cagniard path for
Re g evaluating (11.31). [From Richards, 1976a.]

out to be a second-order pole, denoted by 4,» and is due to the moving nature of the
source. It is necessary to pick up residues in converting to the Cagniard path, giving
the form

P 1 * * —stdq
u(x,5) = — dw dt F(g(t), w, ¢p)e "L
s2 Jo 0 dt

(11.32)

oo
+/ dw R(q,,, w, ¢, 8)e™*"(g,,, w,6),
0

From the first term on the right-hand side here, one can invert to the time domain in
the usual fashion (i.e., by reversing the order of integration and recognizing the result
as a forward Laplace transform), obtaining a single integral over w. The second term
on the right-hand side of (11.3) is already in the form suitable for recognition as the
Laplace transform of a function of time. This term therefore results in an algebraic
closed-form expression. This overall method, an algebraic expression resulting from
an integral of residues, was first developed by Gakenheimer and Miklowitz (1969)
for solving Lamb’s problem with a moving source.

As usual for Cagniard inversion of three-dimensional problems (see Section 6.5), the
complete seismogram can be calculated only numerically, an integration being necessary
for each point in the time series. Figure 11.9 shows theoretical record sections for x;- and
x3-components of acceleration near a left-lateral strike-slip fault. The coordinates for the
four stations are (1, 1.5, 0.5), (4, 1.5, 0.5), (7, 1.5, 0.5), and (10, 1.5, 0.5). The density
of the medium is 2.7 gm/cm?, the P-wave velocity is 5.2 km/s, and the S-wave velocity is
3 kmy/s. The rupture speed in the x,-direction is 90% of the Rayleigh-wave velocity, and that
in the x,-direction is 90% of the S-wave velocity. We see, in this case, small P-waves, sharp
step-like S-waves arriving from the nucleation point, and large acceleration associated with
the passage of the crack tip. The amplitude of waves from the nucleation point decreases
with distance, whereas the acceleration associated with passage of the crack tip increases
because the stress-intensity factor increases with increasing crack length.

The corresponding displacement records are shown in Figure 11.10. As discussed
in Section 11.1.1, the transverse component shows a step-like waveform rather than a
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FIGURE 11.9
Synthetic seismograms for x,- and x;-components of acceleration at stations shown at the top. [From

Richards, 1976a.]

symmetric, impulsive form. The parallel components show a very slow rise beginning at
the arrival of P-waves from the nucleation point, and do not show any clear feature that
can be associated with passage of the rupture front. This shows the difficulty of accurately
estimating rupture velocity from displacement measurements at points off the crack plane.

Compact formulas can be obtained for approximate waveforms corresponding to the
arrivals of P- and S-waves from the nucleation point. At the arrival time t = R/«, we find
that the acceleration has a jump discontinuity:

]

2 ; — ~
g _ Bosdsng | HE Rl
a3(1 — D sin” 0)? R

where D = (u? cos? ¢ + v? sin® ¢) /a?. (R, 6, ¢) are the spherical coordinates shown in Fig-
ure 11.7. The vector ii” points to the radial (i.e. longitudinal) direction from the nucleation
point, given by the unit vector R. The acceleration due to shear waves from the nucleation
point shows a jump discontinuity at 7 = R/f:
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Synthetic seismograms for x - and X3-components of displacement at stations shown at the top. [From
Richards, 1976a.]

2uv
(1 — Da? sin® 6/B2)2

[iég. 43, 5= [cos 8 (a,0,0)

—a sin 0 cos ¢ (sin 26 cos ¢, sin 20 sin ¢, cos 26)] H(f_—R@

The high-frequency asymptote of the acceleration is therefore proportional to ™!, and
the corresponding displacement spectrum has a high-frequency asymptote like w3, in
agreement with previous results (equation (10.30)). The radiation pattern of these waves
shows a double-couple symmetry modified by the factors (1 — D sin? 6)~2 for P-waves
and (1 — Da? sin® 6/8%)~2 for S-waves.

Another compact form of approximate solution can be obtained for singularities of
particle velocity and traction components near the crack tip. Let us denote the arrival time
of the crack tip at (x, x,, 0) as 7, so that

fo=+/xi/u? + x2 /2.

The particle velocity i; on the plane x; = 0 is given by boundary conditions (11.29) and
(11.30) as

iy ~ay/t,/2H@ —1) [/t —t. (11.33)
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Local Cartesian coordi- R P
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and tangent (7) directions. é
[From Richards, 1976a.] > X,

Singularities in i, and 745 are absent on x3 = 0, since these quantities are zero throughout
the plane. Singularities in the remaining velocity and traction components on x3 = 0 are

282 t. H(t,—t
MQNM[%Q2/52+B§_BPBS] _C_(.C__)7
; Ua?Bg 2F Jt—1

Ty ™~ ___4,u/82a [(B —B ) B V2c0s2¢—|— l (UZBZF — V2 cos? ¢>> (az/ﬁz)]
1 U2a3FByg P L # S
(11.34)

x 2 Ht, —1) [ /t.— 1,

4pp?a cos ¢ sin ¢ it H(t,—1)
~ 3 [BSBP_Bg'—% (az/ﬂ2>] _C__C_—,
a’FBg 2 =1

where w is the rigidity and all capital letter symbols are dimensionless quantities given by

23

U=u/a, V =v/a, F =U?sin? ¢ + VZ cos? ¢,

2 4 ;2 4.2

o U~ sin” ¢ + V™ cos

Bi+1=B2+=; = $2V2F ¢
B

Since the singularities (11.33) and (11.34) describe local properties of the motion at
points near the crack tip, it is instructive to work with a coordinate system related naturally
to the local geometry. Figure 11.11 shows such a system, using directions of the normal,
the tangent, and the binormal (i.e., the x;-axis). Tensor components are rotated to

Ty, = T31 COS X + Tp38in X,  T;3= —T318i0 X + Tp3€O8 X.

Letting v, be the velocity of rupture in direction 7, we find that

B F
" oa \ Utsin? ¢ + VAcos2 ¢

v

which is simply related to Bp and Bg.
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We can now resolve the local motion into in-plane components (u, and 7,,) and anti-
plane components (#, and 7). Then the singularities for the in-plane components are

av,Vcosgp [t. H(—t,)
u,~ = 5
! alU 2F JT—1,
—app?v,VR(1/v,) cos¢ [1. H(t,—1)
T} ~ —

" BsU 2F Ji. =1

where R(1/v,) = [(«*/B*)(v3/B*) — 4BsBp + 4B21/(@*v?), so that R is the Rayleigh

function of (5.56),
1 5] 1| 1
=(= _2p2) — B B
R(p) = <ﬂ2 2p ) 4p°\/p ") 5 (11.35)

and singularities for the anti-plane components are

—av,Using [t H(t—1)

u, ~ 5

! aV 2F Ji—1,
. —apUv,Bg sin ¢ S H(@, —1)
= a?V 2F i, =7

In agreement with results obtained in Section 11.1.1, the in-plane stress singularity
will vanish wherever the rupture velocity is the Rayleigh-wave velocity, and the anti-plane
singularity will be zero wherever the rupture velocity is the shear velocity (then, B s =0).
The energy flow into the crack tip per unit length of rupture front can be obtained in the same
way as for the two-dimensional crack. Integrating the work rate over the area enclosing the
crack tip and moving with it, we find the rate of energy flow into the crack tip as

5F

g = limit / (T3, Al + 7,5 Att,) dn

st—o0 J_s—
e (11.36)
2

= %a% [B§ (vn/ﬂ)2 U* sin? ¢ —R (l/vn) a2v5V4 cos? qb] .
For v, less than the Rayleigh-wave speed cp, R(1/v,,) is negative and the crack tip is an
energy sink of both anti-plane and in-plane motions. But for v, > cg, R(1/v,) is positive
and the crack tip becomes the apparent energy source for in-plane motion. This is unrealistic
for a pure in-plane crack, but may be possible if the energy flow supplied by the anti-plane
component (positive for v, < f) can compensate for it (Andrews, 1994). The motion at
¢ = 0 is purely in-plane, and the terminal velocity of the crack tip will be the Rayleigh-
wave velocity cg. The motion at ¢ = 90° is purely anti-plane, with its terminal velocity
being the shear-wave velocity 8. For arbitrary ¢, setting g =0 in (11.36) will give the
terminal velocity. The resultant terminal crack will be approximately elliptical, with major
and minor axes growing at speeds 8 and cg.
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The above discussion of terminal velocity is based only on the rates of energy balance
at the crack tip. In the case of an in-plane shear crack; it is possible that the stress associated
with P- and S-waves running ahead of the crack tip can overcome the cohesive force (if
finite), and the rupture velocity will exceed the Rayleigh-wave velocity, eventually reaching
the P-wave velocity. We shall come back to this point in Section 11.2.3.

11.1.5 THE FAR-FIELD SPECTRUM FOR A CIRCULAR CRACK THAT STOPS

So far we have considered only cases in which the crack grows with a constant velocity.
The results gave us some insight into the slip function expected for a shear crack and also
some understanding of its elastic near field. But to understand its far field, we must solve a
more difficult problem in which the growth of the crack is stopped.

Let us consider a circular crack that nucleates at its center at time 1 = 0, expands with a
constant velocity v, and suddenly stops at a radius r,. Up to the time of stopping, t =r/v,
the problem is self-similar and the slip function given in (11.30) for u = v gives the exact
solution. If we freeze the motion at this instant, we get the kinematic model depicted in
Figure 10.10, for which the compact far-field solution of Sato and Hirasawa (1973) is given
in equation (10.27). This freezing of motion is unrealistic, because it violates causality. At
the instant of stopping, the points inside the crack have not yet sensed the termination of
crack growth. The slip function of another kinematic model, proposed by Molnar et al.
(1973) and shown in Figure 10.12, is more plausible; and the ramp-function slip at the
crack center is quite appropriate, although the slip function at other points should have a
square-root rise, as proposed by Boatwright (1980).

The high-frequency asymptote of the far-field displacement spectrum was determined
by the form of the slip function in space near the crack tip, as discussed in Section 10.1.6.
For the step-function rise, the asymptote is expected to be w32, and for the square-root
rise, w 2. As discussed in Section 11.1.3, the cohesive force smooths these singularities
over the length of the end region. The rupture velocity divided by this length will give the
upper limit of frequency to which the asymptote is applicable.

Because of the difficulty in dealing with multiple diffraction at the edges of the crack,
no analytic solution is available for the elastic field of a growing crack that stops. Bur-
ridge (1969) used a numerical solution of the integral-equation representation of the prob-
lem to solve some finite in-plane and anti-plane cracks. A similar method, originated by
Hamano (1974), has been used by Das and Aki (1977a). Finite-difference or finite-element
methods have also been used for similar problems by Hanson er al. (1971), Dieterich
(1973), and Andrews (1975). Here we shall outline the work of Madariaga (1976), who
used a finite-difference method to calculate the far-field seismic spectrum from a grow-
ing circular crack that stops. As we shall see in his results, the finite mesh size and some
smoothing procedures introduce an artificial end region similar to that due to cohesive
force.

We shall use the same notation and coordinate system as for the elliptical crack in
Section 11.1.4 (Fig 11.7). We shall again assume that the stress drop on the crack occurs
only in the 7,5 component. Similarly, 733 is zero on the plane x; = 0, and u and u, are zero
outside the crack on the plane x; = 0. The boundary conditions on x3 = 0 are therefore



11.1 Dynamics of a Crack Propagating with Prescribed Velocity 561

T3 ="Po } for r < min(vt, r),
T3 =0
11.37
uy=uy=0 for r > min(vt, r,), and ( )

733=0 for all r

(py is the stress drop, as discussed in more detail in Section 11.2).

The circular shape of the crack, which has a final radius of r,, suggests cylindrical
coordinates (7, ¢, z) as the most convenient system to study the problem. We can rewrite
the boundary conditions (11.37) as

T.. = —pPCOS .
rz Po ¢ } for r < min(vt,r,),

Ty, = Po SIN @
U =Uy = 0 for r > min(vt, r.), and
7, =0 for all r.

These boundary conditions have a simple sinusoidal azimuthal dependence. Conse-
quently, we find that the ¢-dependence of displacement components is either sin ¢ or cos ¢.
They can be written as

u, =u(r,z,t)cosg, u¢=v(r,z,t)sin¢>, u,=wr,z,t) cos ¢.

The corresponding stress components can also be written in the same form:
T, =X, (rz,1)cos¢, Th,=2yu(r,z,1)c08¢, T1,,=X%,(r, z1)cos¢,

T, =X,,(r,z,1)cosd, T, =X, 4(r,z,0)sing, T, =X,4(r,z,1)sing.

Three components of particle velocity, i, v, w, and six stress components make up nine
unknowns, for which we have a system of nine first-order differential equations: three equa-
tions of motion and six equations from Hooke’s law (the stress—strain relation). Denoting
partial derivatives by a comma followed by the variable with respect to which the finite
difference derivative is taken, the nine equations can be written as

; 1 1
pu = ;(rzrr),r + ;(Erqb - Eqb(l)) + Erz,z’

: 1 1
pv’r = ;(I’Er(b)’r + ;(EV¢ - 2¢¢) —+ Ez¢’z,

. 1 1
PW p = ;(rzrz),r + ;Equ + Ezz,z’

er,t = ()‘ =+ Z/L)".t,r + )\(M + U)/F + )\U.),Z,
Ezz,t = )‘l'.t,r + A+ U)/r + (A + 2/1«)&),2,
Tpps =M, + A+ 2u) @+ 0)/r + A,

2:r(/f',f = p“b,r — p@@+v)/r, Ezd),f = /“.),z —pw/r, Ezr,l = /“Lw,r + ,Ll,L.t’Z,
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where A,  are the Lamé constants and p is the density. We have to solve these equations
subject to the following boundary conditions on z = 0:

2,,= ~E¢z =—Do for r < min(vt, r,),
n=0v=>0 for r < min(vt, r.), and
Y . =0 for all r.

The slip components Au, and Au, in the original coordinates can be written in terms
ofu andvatz=0:

Au, =2u cos* ¢ — 2v sin” ¢, Auy = (u + v) sin 2¢.

In the case of self-similar cracks studied in the preceding section, Au, vanishes. In the
present case Au, does not necessarily vanish but is found to be practically negligible; i.e.,
u ~ —v, so that

Auy=2u =—-2v. (11.38)

Interestingly, Au, is independent of ¢.

Madariaga (1976) solved the above problem by the finite-difference method using a
so-called staggered grid in which the velocities are defined at discrete times k At and the
stresses at times (k + 1) Az, for integer values of k, where At is the time-grid interval. The
spatial grid-point assignment for each of the nine stress-particle velocity components is
shown in Figure 11.12.

Figure 11.13 shows the slip function Au(r,t) =u(r,+0,1) —u(r, —0,17) at several
points on the crack. The rupture starts at ¢ = 0 and expands with velocity 0.98, where B
is the shear velocity. The slip is measured with pyr./u as the unit. The time ¢ and radial
distance ' are normalized to r /o and r, respectively, where « is the P-velocity. The
slip function in time is shown at the center (» = 0) and at four other points at intervals of
0.2 r,. At each position for which the slip history is shown, an arrow indicates the time of
arrival of P-waves, originating from the perimeter of the crack at the instant the rupture
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stops. Figure 11.13 also shows the static slip expected at the center, » = 0. This level is
low compared to the dynamic solutions for » < 0.4 r, indicating a significant overshoot of
dynamic slip. When the dynamic slip reaches a maximum and its velocity becomes zero, the
slip is held fixed. (This would actually occur if static friction were large enough.) A closed
circle indicates the time of slip arrest at each point. The broken curve at the initial rise shows
the square-root function expected for the analytic solution. The numerical solution shows a
less sharp rise because of the smoothing. This is an example of the effect of the artificially
introduced end region discussed earlier.

The far-field displacement waveform corresponding to the slip function Au, was given
by equation (10.13), which in our present notation is

Q(x,t):/ Aty (c,z—w) s,
x (4

where y is the unit vector pointing to the receiver, & is the position vector of d %, and ¢ is
the speed of P- or S-waves. Writing the Fourier transform of Aut(&,t) as A (¢, ®), the
far-field displacement spectrum can be obtained from equation (10.15) as

Qx, w) = ' “R/c / AL (€, @) exp[—iw( - y)/cldX.
z

In our case, since d¥ =r dr d¢ and Au, is independent of ¢, as shown in (11.38), we get

rc T
Q(x, w) :el“’R/C/O rdr Aiy(r, o)
=T

exp I:iﬂ sin 6 cos(¢p — ¢0)] do,
é

where we have used ¢ - y =7 sin 0 cos(¢ — ¢,). Using the property of a Bessel function
given prior to (6.7), we find

rC
Qx, ) = 2ne“‘)R/ff rdr Aty (r,)J, (ﬂ sin 9) . (11.39)
0 C
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Corner frequency, fr./f

This equation shows that the far-field displacement spectrum is a Hankel transform of
At (r, w). As discussed for a more general case in Section 10.1.3, the far-field spectrum
can recover the slip function only for wavenumbers less than w/c, because | sin 8| < 1 for
real 6.

The numerical solutions for Aui(r, t) are Fourier-transformed in ¢ and Hankel-
transformed in r to find the far-field spectrum 2 (x, w) by (11.39). Figure 11.14 shows
the resulting spectra, |$2(x, w)| for P- and S-waves at three receiver directions from a cir-
cular crack with rupture velocity v = 0.98 (6 = 0 corresponds to the normal to the crack
plane). The spectra are flat at low frequencies and decay roughly as w~2. If the nucleation
phase determines the high-frequency asymptote, we should have obtained w3, We must,
therefore, conclude that the stopping phase dominates the high-frequency spectrum, and
the power of asymptotic decay is more like 2 (rather than like 3) in the case of a circular
crack that suddenly stops.

The corner frequencies of the spectra were determined by the intersection of the low-
frequency level and the high-frequency asymptote. They are indicated in Figure 11.14 by
a closed circle for S-waves and a square for P-waves. The results for corner frequencies
for various directions & and rupture velocities are summarized in Figure 11.15. The corner
frequencies are given in units of 8/ for rupture velocities 0.6, 0.78, and 0.98. Although
the corner frequency increases with the rupture velocity, the variation is not very strong for
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the range of rupture velocity considered here. The average values of the corner frequencies
over all directions, for the case of v = 0.98, are given by

£F (inHz) = 0.328/r, £5 (in Hz) =0.218/r,

for P- and S-waves, respectively. The above equations predict considerably lower corner
frequencies (by about a factor of 2) than Brune’s (1970) formula, which was derived from a
simple kinematic approach and which has been widely used in the interpretation of observed
seismic spectra. The corner frequency for P-waves is higher than for S-waves, as expected
from the earlier result of Molnar et al. (1973) for kinematic models with a similar slip
function (see Figure 10.12 and Section 10.1.6).

11.2 Dynamics of Spontaneous Planar Rupture Propagation

One of the most challenging problems in seismology is to predict the occurrence of an
earthquake and the resultant seismic motion from the study of physical properties of rocks
in the epicentral region and the tectonic stress existing in the region. In order to approach
this problem, we must go beyond the treatment of rupture propagation in the preceding
section, in which the nucleation, propagation, and stopping of a rupture front are arbitrarily
prescribed. There are three important lines of work to be carried out before we solve this
problem. First, we must study properties of fault-gouge material, such as the specific surface
energy, the length of the end region, and the static and dynamic values of friction and their
distribution in space. Second, we must determine the tectonic stress acting on the fault
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zone. Third, we must be able to predict the entire rupture phenomena from beginning to
end solely on the basis of the initial stress condition and material properties of the fault
zone. In this section, we shall consider the last aspect of the problem for an idealized case.
We shall concentrate on how the stress distribution and the fracture criterion determine
the movement of a crack tip, and (consequently) the slip function. For simplicity we shall
confine our attention to planar shear cracks in an infinite homogeneous medium (so that the
normal stress is unchanged by the rupture process—see Problem 10.2). We start with the
case of an anti-plane crack, following the pioneering work of Kostrov (1966).

11.2.1 SPONTANEOUS PROPAGATION OF AN ANTI-PLANE CRACK:
GENERAL THEORY

Using the (x, y, z) coordinates shown in Figure 10.19, we define the crack as
X <X <Xy —00<z<O09, and y =0.

For an anti-plane case (Section 10.2.3), only the z-component of displacement w(x, y, ) is
nonzero, and the only nonvanishing elements of the stress tensor are t,, = u(dw/dx) and
7, = 1(dw/dy). The problem is two-dimensional, with no dependence on z. The equation
of motion in this case reduces to the wave equation

B2 9r2 ax2  9y?
where 8 = \/it/p is the shear velocity.

Suppose that initially the crack is absent and the body is in equilibrium with an initial
state of stress o®. We shall take this initial state as the reference state and measure the
displacement relative to this state. The total stress is then o = &% + 7, where the incremental
stress T is derived from u by Hooke’s law. Initial conditions are that w and dw /9t are zero
for t = 0. When the crack is formed (i.e., when a displacement discontinuity develops across
the crack), the traction on the crack drops to the dynamic frictional stress. The only changing
component of traction on the crack (y = 0) is 0, and it changes from its original value afz
to anew value, say ofz. We shall equate the stress drop o, (x, 0) — crydz (x,0,1) to p(x,t). The
appropriate boundary condition for traction on the crack for the above choice of reference
state is then given by

ryzz—p(x,t) forx; <x <x,, y=0. (11.41)

In order to find the boundary condition outside of (x;, x,) on y = 0, we first need to
establish that w(x, y, t) is an odd function of y. This is done by writing the solution of
equation (11.40) as

w://u?(w,k) exp(—iwt + ikx —vy)dw dk y>0

:[/w(w,k) exp(—iwt + ikx + vy) dw dk y <0,
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where v = /k? — w?/B? and Re v > 0 because of the radiation condition. Continuity of

traction 7, across y = 0 then gives

W, k) = —w(w, k),

so w(x, vy, ) must indeed be an odd function of y. Secondly we note that an odd function
of y must be zero at y = 0 if it is continuous there. Since w is continuous at y = 0 outside
the crack, it follows that

wix, vt} =0 X <X,X%<x,y=0. (11.42)

Equations (11.41) and (11.42) together give what is called a mixed boundary condition
on y = 0. Because of the symmetry, it is sufficient to obtain a solution only in the half-space
y < 0.

To solve this boundary-value problem, let us start with the representation theorem
(2.43), using the Green function that satisfies the stress-free condition on the surface y = 0.
Since displacements and stresses are independent of z, the relevant form of (2.43) is

oo oo
.S —00

where G35 is the displacement at (x,, ¥, fy) in the direction perpendicular to (x, y,) for a
line source at (x, 0, ¢) in the direction perpendicular to (x, y).

Such a Green function, entailing only S H-waves, can be obtained by first finding the
Green function G for a full space corresponding to a line body-force impulse located at
(x,0,1):

%G 3°G 3°G

H—— — 5 =8(xg — X) 8(¥p) 81y — 1).
a3 ax; 32

Apart from differences in notation, this is the equation (6.42) that is solved by (6.43), and
for our present purposes we obtain the full space solution as

H I:([o — )=y (g— x)? + )’g/ﬂ]

G(-x()? y07 t();x’O» t) = 2JTMR >

where R? = (tg — 7 — [(xg — %)2 4 yg]/,B2 and H[ ]is the unit step function. Since the
full-space Green function G, with a source on y = 0, satisfies the stress-free condition at
¥ = 0, the Green function Ggrge for a source on the free surface y, = 0is merely 2G, where
the effect of reflection is taken care of by doubling the amplitude. That is,

G2 (x0, Yo» 19 X, 0, 1) = 2G (xg, Yo g X, 0, £). (11.44)

Another way to obtain (11.44) is to use reciprocity and the result given in Problem 5.6 for
S H-waves recorded on a free surface.

567



568

Chapter 11 / THE SEISMIC SOURCE: DYNAMICS

FIGURE 11.16

All points within S, can
influence the displacement
at (xg, fp)-

In terms of the traction 173 =17, = 7(x,1), say, for all x on y =0, we can write the
solution for displacement w by putting 2G (x, fy; X, ) into the representation (11.43) as

1 ,t
w(xo,yo,to):——/f TED grdi oy <0, (11.45)
TU s R
where S is that part of the xz-plane which lies inside the cone
Bty — 1) — (xp—x)’ —y; 20  0=r=1,

For y, =07, we obtain

T(x,t)dx dt

1
07, 1) = — , 11.46
w(x. 07 1o) U f/so Vo — 12 = (x5 — %)%/ B2 e

where S, shown as the shaded area in Figure 11.16, is the triangle
By —1)2— (g — )220 O=<r=1,

Since we do not yet know t (x, r) for the whole area of Sy, equation (1 1.46) does not
immediately give the solution. To find T we can use (11.42), to obtain the following equation

for x, < x; and xy > x;:
// t(x,1) dx dt
=0.
Sy \/(to —1)? — (xg— x)%/B?

(x, 1) is known in some parts of the above integration region S,, shown in Figure 11.17,
where the loci of crack tips are indicated by x;(¢) and x,(¢). The subregion S| lies inside
the crack, and 7 (x, 7) is known there from (11.41). We also know that 7 (x, t) is zero in
the subregion S, — S} — S, for which x > x,(0) + Bt, because any disturbances from the
crack have not yet reached this subregion. The value of 7(x, 7) in subregion S, is unknown.
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x4(1)

FIGURE 11.17

7(x, 1) is known in S}, but
; unknown in S,. It is zero
x,(0) x,(0) in SO — Sl — SZ'

Thus, as long as S, does not intersect x,(#) (when the disturbances from the left crack tip
have not yet reached the observation point), for x, < x; and x, > x, we have

// T(x,t)dx dt :// p(x,t) dx dt (11.47)
Sy \/(fo_t)z_(xo*x)z/ﬂz A \/(to—f)z‘(xo_x)2/ﬂ2

To solve this integral equation for 7 (x, 7) in S,, we make the following transformation:

E=Bt—x)/vV2,  n=(Bt+x)/V2. (11.48)

Then (11.47) can be rewritten as

- LR s — = V0 (11.49)
%0/vV2 /& — & Jny© Mo—1 ~x,)/v2 /& — & J-¢ Mo— 1

where n,(¢) is the solution of

/50 dé¢ TooT(E mdy % d¢ 1 p(E,n)dy

=3 m+< ,
Ny —¢ xz(ﬁﬂ

which defines the position of the right crack tip in terms of ¢ and 7. The integration limits
for ¢ and 5 can be found from Figure 11.18, and (11.49) will be satisfied if

Ul n,(&)
/ . M: : P(QU)L~ (11.50)
&) Ao — 1 = No—1

Equation (11.50) is in the form of Abel’s integral equation for 7 (¢, ). The solution is
described in Box 9.3, and in our case we find

1 d Mo dT] 772(5()) dn
(& np) = —— — p (& ) ——.
7T dng Juye) Mo — M J—, NI
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FIGURE 11.18
Change of integral vari-
ables from (x, 1) to (&, ).

Since

=g

il

1=,

o d 2(ny —
/ m _ ! (1 I (o —m)
n, Mo~ M~/ — 1 n—"o
the above equation reduces to

1 M) (&) —n
T(&ps 1) = —F—= P& ) —————dn. (11.51)
mty/ng — M2(&) J=¢
The path of integration is along & = &, which corresponds to the path t — f, = (x — xp)/B

in x#-coordinates. Transforming back to x-coordinates, and referring to Figures 11.17 and
11.18, we obtain

Mo

plx, g+ (x —x0)/B]

1
o= |
L 7T/ Xg — Xo(tp) Jx,—B1, X0

for xq > x,(ty), where 7, is the solution of

720 _—_sz(tz)—x dx  (11.52)
— %

Bty — xo = Bt — Xy (15).

In other words, t, is the time at which the crack-tip locus x,(t) intersects the integration
path. The above expression is valid for the time interval 0 < 7y < [xo — x,(0)1/B. A similar
result may be obtained for the region x, < x; for the time interval 0 < 75 < [x,(0) — xol/B.
To determine 7 (x, ¢,) for later periods, additional subregions of S, with unknown T(x,1)
appear, corresponding to repeated diffraction of the waves at the crack boundary.
Equation (11.52) shows that the stress 7 (x,, fy) becomes infinite when the crack tip
arrives at the receiver, so that x, = x,(f;). At any given time #, prior to arrival, the distance
between the crack tip and the receiver is xy — X,(fy). Using the stress-intensity factor K
defined in Section 11.1.1, T (x,, ;) near and ahead of the crack tip can be written as

K
% T T — 11.53
v fo) ™ = [y — Za gl (11.53)
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x,(1)

] (xo, to)

FIGURE 11.19
Integration path for
(11.55).

On the other hand, as can be seen from Figure 11.19,
Xg — Xp(ty) = Bty — 1),
Xy (1) — x5(1) ~ Xy (1) (1 — 1),
and therefore

X — X5(tg)

~1—x . 11.54
T~ 1 Re/p (11.54)

Comparing (11.52), (11.53), and (11.54), we find that

_ X, (1p)
o W = ooty = 3V Bl e (1155)

pix, 1ty —

xp(tg) =Py Vxa(tp) —x

near the crack tip, where x; ~ x,(t,) ~ x,(,). The integration path is a straight line, shown
connecting [#,, x,(ty)] and [0, x,(#,) — Bty] in Figure 11.19.

In Section 11.1.2, we showed that the tip of an anti-plane crack moving with a subsonic
velocity v absorbs energy at a rate given by

2 /
= _ vk / = E (11.15 again)

Expressing the surface energy required to create a new unit area as G, we have

_e_K /[
v 4 B2
Combining this equation with (11.55) (and dropping the subscript O from #,), we obtain

K =2/uG( - v¥/gH1/*

2 X5 dx
_\/;,/1 —v/B [xz_ﬁt plx,t — (x, —X)/ﬁ]ﬁ
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or

Xy o 1+U/,3 1/4
[x,t — (x) — X))/ Bl——==+/2 G( ) ; (11.56)
/xz—ﬁtp : *2 = N/P Xy — X e 1—v/8

where v = %, (¢). This equation, first derived by Kostrov (1966), gives the velocity of the
crack tip for given p(x, ) and G. Equation (11.56) holds only when

Xz d
/X plx,t — (x5 — x)/ﬁ]?i_; >/ 2unG.

2—',31 X2 —

Otherwise, the crack tip does not move.

Once the locus x,(¢) of the crack tip is determined, 7(x, ;) can be calculated by
equation (11.51). Then we can use (11.45) to determine the displacement at any point. In
fact, the displacement inside the crack can be determined using only the stress drop p(x,1t)
inside the crack. To see this, we transform the variables (x, ) to (£, ) by equation (1 1.48),
and rewrite (11.46) as

i n)=—1—/f (&, n) d¢ dn
O wu ) V2B = Eymo— 1

Next, we divide the area of integration into four parts, as shown in Figure 11.20. In S, and
S, —7(&, ) is given as the stress drop p(&,n).In Sy, T(&, n) is unknown but is determined
by equation (11.51) using p(&, ). In the remaining parts of Sy, T(&, n) vanishes.

From equation (11.50), for a point (£, n;) close to the crack-tip locus but outside the
crack, we have

ony=0".

/’“ t(Epmdn /"2@ p&.mdn _
7

(&) Ny =1 = ny—n

Our integral with respect to n for the areas S; and S, is exactly of the above form, with
1o = 1, Thus the contributions from S, and S, are zero. The only contribution comes from
S5, so that the displacement on y =07 is

-1 [ dé o p(&,n)dn
Cor )=—/ , (11.57)
W00l = i Jey VB — € J—¢ o —T

where & = &,(n) is the locus of the crack tip in the (¢, 1) plane. The above equation, giving
the fault slip (2w) as a function of stress drop p(&, n) and crack-tip location &, (1)), was used
by Ida (1973) in a study of spontaneous rupture propagation that is one of the examples we
take up in the next section.

11.2.2 EXAMPLES OF SPONTANEOUS ANTI-PLANE CRACK PROPAGATION

Let us find how the equation of crack tip motion, (11.56), is solved for some simple
examples.



BOx 11.3
The stress-intensity factor associated with cohesive force alone

Here we shall show that equation (11.55) can be used to derive (11.19) for the case of a
crack tip moving at constant velocity.

Let the coordinate in the x-direction in a frame moving with the crack tip at a velocity
v be x’. Then x" = x — x,(t), where x,(t) = constant + v?.

We have previously defined p as the stress drop a?z = USZ. But if a cohesive force is
considered, as in (11.18), the stress on the fault plane becomes U;lz + o, so that the stress
drop is O‘OZ - Ufz — o, i.e., it is augmented by an amount —o.. The effect of the cohesive
force is therefore to add a stress concentration, with the stress-intensity factor derived from
(11.55) by replacing p with —o. The integration is limited to the region —d < x"<0in
which o, # 0, and all this range is included in the integration limits of (11.55).

As can easily be seen from the figure,

x5tg) —x = %(gx/) and dx = p dx’.

B—v

Therefore, equation (11.55) is transformed to

2 [0 dx’
K=— —/ o.(x' ,
‘/n » (x) =

which is the result used earlier in (11.19). Note that K is independent of v in this case.

t —d

X,(2) oc vt
(crack tip)

4
«

0// / X Xa(to)
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A SEMI-INFINITE CRACK
Consider an unbounded body under a uniform shear stress USZ. A crack appears instanta-
neously at z = 0 over the half-plane y = 0, x < 0. Assuming that the dynamic friction is
zero, a stress drop of ogz occurs instantaneously for y = 0, x < 0. We shall find the position
x,(t) of the crack tip + > 0 using the equation of crack-tip motion. Since

o) = O'SZ for x < x,(t),

we have from equation (11.56)

N 0 ; 1/4
/ 2 0y 0% _ famG | LER2/BY (11.58)
xz_ﬁt \Y ‘x2 - X 1 - ‘xZ/ﬁ

The left-hand side here is equal to 20;)2«/,3 t. The above equation cannot be satisfied for ¢
smaller than 7, given by

200,/Bt. = 2unG, (11.59)

and the crack tip does not propagate until time 7,. Once this time is passed, the crack-tip
motion is governed by equation (11.58), i.e.,

. 1/4
L__ 1+x2/,3
tc—<1‘5€z/ﬁ> '

Solving for x, and integrating with respect to ¢ from 7, to #, we find

X, (t) = Bt — Bt I:l +2tan"! (;) — %} )

The crack tip starts moving at # = ¢, with zero initial velocity, rapidly reaching a terminal
velocity B. Figure 11.21 shows the motion of the crack tip for different 7. The solid lines
correspond to the Irwin criterion in which the critical stress-intensity factor is assumed to
be a material constant, independent of rupture velocity (see Problem 11.3). The step-like
curves are obtained by a numerical method that is discussed later.

A SEMI-INFINITE CRACK THAT STOPS
The above classic example given by Kostrov (1966) was extended by Husseini ez al. (1975)
to include the stopping of crack-tip motion. The crack-tip motion can be stopped by placing
a barrier of high surface energy along the fault plane or by limiting the prestressed region
to a finite size. In either case, the following condition is imposed on the stress drop p(x, ?)
over the initial semi-infinite crack:

plx: =0 forx < —a andt > 0,

=Dy for —a < x <x,(t)andt >0,
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20— Instantaneous semi-infinite
anti-plane shear crack
Analytical solution
15 = (Irwin criterion)
=
2 —---Analytical solution
g’ (Griffith criterion)
ks Numerical solution 7
o 10
80T amax-o0y
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5
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FIGURE 11.21

The crack-tip location x, as a function of time for various values of 7, where T, = at /d, « is the

compressional wave velocity, 7, is the rupture starting time defined in (11.59), and d is the grid length
used in the numerical solution described in Section 11.2.3. S is the parameter of a fracture criterion
used in the numerical solution, and 1+ § = S, /(q?y — Ufy), where S, is the critical stress difference
defined in (11.78). Broken curves correspond to the criterion of constant surface energy, and solid

curves to the criterion of constant critical stress-intensity factor. [From Das and Aki, 1977a.]

where p, is a constant. This is intended to simulate a finite crack without introducing
complex multiple diffractions at crack edges. For a given p, and specific surface energy
G, at x =0, a must be greater than Sz, so that the rupture can be initiated. From (11.59),
the condition is

ur Gy
Zpg

a >

The rupture can be stopped by making G increase with x. For example, consider a linearly
increasing surface energy

G(x) = (1+mx)G,,.
From equation (11.56), we get

B tcz(l =+ m)c2)2
12+ 12(1 + mx,)?

Xy — Pt > —a

)'Cz(f) = 5
(11.60)

O+ a)?/BE—i2(1+ mxy)?

T ( + @)/ B4 12(1 + mx,)?

X, — Bt < —a.
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The stopping position of the crack tip, x;, may be obtained from the second equation in
(11.60) by setting x,(t) = 0. Then

a— pt,

Xe=———.
' mpt,—1

Since the solution x, must be positive, the rate m of increase in specific energy must be
greater than (,BIC)_1 for the crack tip to stop. The motion of the crack tip can be obtained
by solving the differential equation (11.60).

Another simple case of a barrier is a step-like increase in G:

G =G, 0<x<b,
G=Gy+AG b<x.

In this case, for x, () > b, we have

(xy 4+ a)?/B% — 12[1+ (AG/Gy)P
(xy 4 a)2/B% + 12[1+ (AG/Gy)P

iy = (11.61)

and setting %, = 0 we can solve for the stopping position of the tip,
x,= Bt 1+ (AG/ Gyl —a.

Since x, > b, an inequality has to be satisfied for the stopping to occur:

AG un(Gy+ AG)
1+ — )= + b). 11.62
Bi. ( + Go) 2 > (a+b) L )

If we put this condition into equation (11.61), we find X, to be zero or negative. Since X,
cannot be negative physically, X, must vanish and the equality holds in (11.62). The equality
means that x, = b, or that the crack tip stops immediately at b if condition (11.62) holds.
If not, the tip will propagate indefinitely beyond b. For example, if Gy= 10* erg/cm?,
(@a+b)=1km, p,=10 bar, and p =3 x 10" dyn/cm?, then AG must be about
107 erg/cm? or greater for the rupture to stop. Furthermore, the larger the length or the
larger the stress drop, the greater AG must be to stop the rupture.

An alternative way of stopping a rupture is to limit the size of the prestressed region.
For example, consider the case in which, for ¢t > 0,

px,t)=0 forx < —a
=Dy —a<x<xy(t)y<b
=) b < x.

The equation of motion (11.56) gives the crack-tip velocity as

a_ [f (xp. D = B22
2T f G ) 4 B
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where
f(xz,t):\/ﬂ_t Xy <b,xy — Bt > —a
=/x,+a Xy — Bt <—a
:\/E—m Xy >b,xy — Bt > —a

=X, +a—x,—b Xy — Bt < —a.

From the final equation, the stopping position may be obtained by setting x, = 0. Then

. :(a—i—b)z_i_b—a_'_&
s 4Bt 2 4

C

For example, if b ~ a ~ Br,, then x, ~ b(1 + 1); butif b > a ~ 1, then x; ~ b(1 + b/4a).
Thus, if the length b of the prestressed region is much greater than t, = umw Gy/2 p%, there
will be a considerable overshoot of crack extension into the initially unstressed region. For
typical values of the surface energy G measured in the laboratory (~ 10* ergs/cm?), and
7, = 10 bar, B1, is only 50 cm. However, as mentioned in Section 11.1.3, the real value of
G for earthquakes may be around 108 erg/cm?, which corresponds to values of Bz, around
5 km. Since G is expected to increase with earthquake magnitude because of increase in
the zone of microcrack formation and plastic deformation, overshoot may not play a very
important role in practice.

SLIP-RATE-DEPENDENT BOUNDARY CONDITION ON THE FAULT
If there should be any constitutive relation between the stress and slip, or between stress and
slip rate, it can be incorporated into our equation of rupture propagation. For example, Ida
(1973) assumed that the stress o, on the fault is related to the slip rate Aw by the following
equation (see Fig. 11.22): -

Oy =V Aw for Aw < v,

(11.63)

_ ~d A
=0y, for Aw > v,

where o is fotal stress acting on the fault plane, i.e., the sum of the initial stress afz and
the stress increment 7, due to crack formation. The slip rate Aw is equal to —2w for w
evaluated on y = 0~ (which is the side of the fault for which we have studied displacement;
see, e.g., (11.45)). Although the above constitutive relation is not very realistic, it does
display a transition from ductile to brittle behavior. This may grossly simulate the behavior
of an earthquake fault on which creep and dynamic failure are both occurring.

Suppose we start with an initially unstressed fault. As the tectonic stress increases,
slow creep may occur across the fault, and the slip rate may increase in proportion to the
stress. When the slip rate reaches a certain yield limit v, the stress may suddenly drop to

the dynamic friction level o'¢

yz» creating an earthquake.
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FIGURE 11.22
Constitutive relation between the stress across the fault oy [f——
plane and slip rate given by (11.63). [From Ida, 1973; ;
copyright by the American Geophysical Union.] v, Slip rate, Aw

To incorporate the above constitutive relation into the equation of rupture propagation,
we make use of

WEnn) = /QO dé o p(é mdn
00 f:w &g Ve — NI

from which we can find the slip Aw = —2w inside the crack in terms of the stress drop p

s (11.57 again)

inside the crack.

Let us assume, as before, that a semi-infinite crack suddenly appears for x <0 at
t = 0. Since, for t < —x/p or n <0, we expect no disturbance from the crack tip, the
slip will be uniform under a uniform initial stress ogz. The slip for < 0 can be expressed
by equation (11.57) in terms of a uniform stress drdp Po» Which is to be determined by the
constitutive relation (11.63). Since the integration region is bounded by t = 0, &, (n7) = —
for n < 0. Then equation (11.57) can easily be integrated to give

w(Co> 1o) = \/— /

where (11.48) has been used. From equation (11.63), we have

d t
/ podn __ﬂpo SO,

m

oy, _a — po=y A =—2yw =2yBpy/1n for Bt < —x. (11.64)
This equation determines the stress drop p, occurring for ft < —x in terms of the initial
stress and the material constants, i.e.,

0
G_yz

o=
O 14 2p8/1

For Bt > —x or n > 0, we can determine the stress drop p(&, 77) in essentially the same
way as the above by solving (11.57) and (11.63) simultaneously. We must, however, use
numerical methods to solve the integral equation (11.57). Since the integration range is
limited to S5, shown in Figure 11.20, the discretized integral equation can be solved in
steps, in each of which the unknowns are p(&,,n,) and w(¢,, 7,) at one discretized point
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(n,m). Since p(&,.n,) and Aw = —2w(¢,, n,) must be related by equation (11.63), the
two equations can determine both p and Aw at the point.

In solving (11.57), the crack-tip location &,(n) must be known. Recognizing that
& =Bt — x2(t)]/«/§ and n = [Bt + xz(t)]/ﬁ on the crack-tip locus, we have

dé, d&/dt B —x,(1)

dn  dn/dt  B+i,@®)

Then the equation (11.56) for the motion of the crack tip can be rewritten as

dé _ QrpG)?

dn X i 4
b= — pp—
{ L_ﬁlp[x (xy = )/B] m}

The above equation is valid only when

[2 plx,t — (x; — x)/ﬂ]—;xf_x > 2unG, (11.66)

~24/37 x2 -

(11.65)

otherwise the crack tip does not move and x,(¢) = 0. In that case,
—==1. (11.67)

The condition (11.66) can be checked by a numerical integration of discretized
p(&,, n,). Then, either (11.65) or (11.67) is used to determine the locus of the crack

tip by

dé,
éz(an) = 52(77m) + —=A
dn
where An is the grid spacing in 7.

Ida (1973) made numerical calculations for various choices of the parameters v, v,
and a;.lz, and found two distinctly different types of rupture propagation, depending on the
parameter values. One type is a smooth rupture propagation in which, once the rupture
starts, the crack tip accelerates smoothly and approaches the shear velocity. An example
of smooth propagation is shown in Figure 11.23. Here the time ¢ is measured in units of
= JT[LG/zﬂp(z). This is the delay time given in (11.59), which corresponds to the stress
drop given in (11.64). We discussed the magnitude of 7, in earthquakes in the previous
example of a semi-infinite crack that stops. The distance x is measured in units of gz, and
the numbers in Figure 11.23 represent o, (x, 7) in units of py. The parameters are chosen
asy =2u/B, v, =2.1x (Bpy/1), and O’Sz = 0. In the case of smooth rupture propagation,
the cracked region (for which Oy, = 0 in this case of Uydz = 0) extends in both directions.

For a slightly different choice of parameters, the mode of rupture propagation can be
quite different. The result is shown in Figure 11.24 for y =2u/8, v, =2.6 x (Bpy/1), and
d

o 0. The rupture propagation is quite irregular; the crack tip moves for a short distance,

yz
then stops, restarts, and repeats the process. The fault, once cracked, can be quickly healed,
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FIGURE 11.23

Plotof o', (x, ) in units of py. A smooth propagation occurs in this case. [From Ida, 1973; copyright
by the American Geophysical Union.]

because the slip rate drops below v.. Thus the healing front follows the crack tip with a
similar speed, making the effective crack length always roughly constant.

As discussed in Chapter 10, the high-frequency spectrum of seismic waves in the far
field consists primarily of contributions from rupture nucleation and stopping points. We
therefore anticipate a long duration of complex high-frequency waves from an irregular
rupture process such as shown in Figure 11.24. On the other hand, a smooth earthquake
like the one shown in Figure 11.23 will generate large long-period waves, with distinct
short-period phases associated with the initial start and the final stopping points.

Ida’s result indicates that the smooth type of rupture occurs when i/ (the impedance
associated with plane shear waves—see Box 5.4) is only a small multiple of p,/v.. Thus,
roughly speaking, the smooth type of fault propagation occurs when the impedance in the
creep region is higher than in the elastic region. For a given value of v, the smooth type of

rupture occurs at lower frictional stress GSZ.

COHESIONLESS CRACK
Burridge and Halliday (1971) considered an anti-plane crack that nucleates along a line
at a constant depth in a homogeneous half-space. The crack propagates vertically both
upward and downward. Their fracture criterion is a special case of (11.56), in which the
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FIGURE 11.24

Plot of o,,(x,1) in units of p,. A case of irregular propagation. [From Ida, 1973; copyright by the
American Geophysical Union.]

specific surface energy G is set to zero. From (11.56), the condition that G = 0 can be met
either by

v=p

or by

/Xz p[x,t—(xz—x)/lB]L:O, (11.68)
XZ—/SZ‘ xZ — %

Equation (11.68) is possible only if p(x, ¢) changes sign along the above integration path.
If (11.68) is not met, the crack tip must propagate with the shear velocity 8. To slow down
a propagating crack, therefore, one must postulate a negative stress drop. Taking the x-axis
vertically downward, Burridge and Halliday considered the stress drop given by

p(x, 1) = po(1 — x*/b?), (11.69)

where p, is a constant. The crack tip propagates downward and past the depth b with
the velocity B until the contribution from negative p matches that from positive p to
satisfy equation (11.68). Then the crack tip moves deeper with a velocity determined by
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equation (11.68). Thus the stress along the fault plane above the depth b drops to a lower
value, but that below b jumps to a higher value. We shall come back to the cohesionless
fracture in the discussion of in-plane cracks in the next section.

11.2.3 SPONTANEOUS PROPAGATION OF AN IN-PLANE SHEAR CRACK

Let us now consider spontaneous propagation of an in-plane shear crack. As in the anti-plane
case, the crack lies on the plane y = 0, extending to infinity in the z-direction but confined
in the x-direction between x,() and x, () at time ¢. For the in-plane case, the nonvanishing
displacement components are u(x, y, 1) and v(x, y, 1) (see Section 10.2.4). As in the anti-
plane case studied in Section 11.2.1, we assume that initially the crack is absent and that
the body is in equilibrium with an initial state of stress ®. We shall take this initial state
as the reference state and measure the displacement relative to it. The initial conditions are

then given by

814_81)_

—_— = = for t<O.
ot ot

u=v=0 and

The total stress is then o = o® + 7. When the crack is formed, o, on the crack drops from
oy, to the dynamic frictional stress od . Putting the stress drop ol — afy = p(x,t), the
boundary condition for incremental stress on the crack appropriate for the above choice of

reference state is given by

rxy_———p(x,t) x, (1) < x <x,(1),y =0. (11.70)

As shown in Section 10.2.4, the continuity of v(x, y, ) and 7, (x, y, 1) across y =0
leads to symmetries such that u(x, y, ) and 7, (x, y, t) are odd functions of y and v(x, y, )
and 7, (x, y, t) are even functions of y. Since Ty is continuous across y =0,

=0  y=0 (11.71)

We need another condition on y = 0 outside the crack. This is given by the continuity of u.
Since a continuous odd function of y must vanish at y = 0, we have

u=0 x < xy(1), x,(1) <x,y=0. (11.72)

(11.70) and (11.72) taken together are a mixed boundary condition on y =0, and (11.71)
gives the other boundary condition for all x on y = 0. Because of the symmetry, itis sufficient
to obtain a solution only in the half-space y < 0.

We shall define the two-dimensional Green functions g.(x,y,?; E,y,7) and
8ye (X, ¥, 15 &, y, 1), for a homogeneous half-space y =< 0 with free surface at y =0, as
the displacement components u and v observed at (x, v, t) due to a line-impulsive force
applied at (¢, y, ) in the ¢-direction. Then, from the representation theorem (2.43),
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since our g, g, satisfy the stress-free boundary condition, and since 7,,, =0 on y = 0,

¥
we have

u(x,y,t):// rxv(é,t)gxé(x,y,t;g’,o,t)dé dr,
g "

o(x, ,1) =// ro (& D)8, (6, 3, 16,0, 7) dE dT.
s
The region of integration S is, from causality, that region of the (£, T) plane for which
Ar—1 - - —y*=0 1=1>0,

where « is the P-wave velocity. The above representation is valid also for displacements
on the crack plane y = 0™, in which we are particularly interested. In this case, the region
of integration is a triangle S, in the (£, T) plane given by

-1 - (x—8*=0 1>1>0,
and we write

u(x,0, t):// rxy(f,r)gxé(x—ﬁ,o,t—r) dé dr,

g = :

! (11.73)
v(x,O,t):// rxv(f,t)gvé(x—é,O,t—r)dé drt.

S() ' '

This notation for the Green function refers to the case of a homogeneous half-space when
source (&, n, T) and receiver (x, y, 1) are both on the free surface. Explicit formulas for g, ¢
and g, are easily derived by Cagniard’s method (Section 6.4), and they are particularly
simple when y = 1 = 0. The result for this case is

462 (0?2 — B H)Vo? — a2 1 1

gxé(x,(),t) = p_——y RO)R (@) " <0< —
1 Jo?-—p2 1
~ apB2x  R(o) = (11.74)
K X 26 (or—B Vol —a2/p 2 —02
. i | FY. ’
0 B (l CR> i 7 uB2x R(0)R*(0)
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where o =t /x, B is the velocity of shear waves, R is the Rayleigh function

R(o) = 202 — B2 —402/o? —a~2/02 — B2,

R* and K are defined by

& 2B/ — 1?
[: 9
165 _(_/3_2>éf <_5_2>5_4
Z [1 ST o aid e b

and cy, is the velocity of Rayleigh waves (R(cg 1) = 0). Equation (11.74) was first derived
by Lamb (1904).

If 7, (¢, ) were known on the whole x-axis, equation (11.73) would give the solution of
the probfem. From the boundary condition (11.70), however, the stress component (11.72)
is known only on the crack surface. Outside the crack, the boundary condition (11.72) is
a constraint on the displacement component u. Separating the region of integration S, in
(11.73) into a part S, inside the crack [x;(¢) < x < x,(#)], for which 7, is known by (11.70),
and a part S,, we can rewrite the condition (11.72) as

/f p(é’f)gxg(x_éso’t_f)df dT (1175)
S[

= //57 Tyy (& T)8ee(x — &£,0,1 —T) dl dt Z(;rx);(j)x;(;).
Kostrov (1975) obtained an analytic solution of the above equation. The result, however, is
much more involved than in the case of an anti-plane crack. For example, the stress-intensity
factor given by only one integration in the anti-plane case (equation (11.55)) now requires
five integrations and one differentiation. Besides, the result is valid only for a crack-tip
velocity less than the Rayleigh-wave velocity. It therefore appears that a numerical approach
may be more satisfactory.

A sophisticated method of discretizing the integral equations (11.73) and (11.75) was
described by Burridge (1969). However, a more conventional method, such as the one used
by Hamano (1974), reproduces Burridge’s result quite closely. In Hamano’s method, the
x-axis is divided into segments of equal interval d, and each segment is presumed to take
the average value of stress and displacement over the segment. Then it is natural to replace
the point-to-point Green function g(x — &, 0,7 — ) by a segment-to-segment Green func-
tion ?(x,; — £, 0,8 — 7), which is the averaged displacement over the ith segment due to
the force distributed over the jth segment:

_ x+(d/2) ¢+d/2)
E(xi—éi,o,t~t)=—2/ dx/ gx —&,0,t — 1) dé. (11.76)
d= Jx,—w/2 ¢—d/2)
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For Bz (x,0,¢) given in (11.74), §x§ (x,0,1) can be obtained in a compact form, as given
in Das and Aki (1977a). Using the averaged Green function, the integral equation (11.75)
can be discretized as

Z Z P& B — &t — 1)
i

in S,
(11.77)
for x; < x(1;)

= Ty & T8 (5 — &1ty — 7))
ZJ:XI: A e S or X, (f) < x;.
in S,

The order of solving the above set of equations in Hamano’s method can be arranged so that
there is only one unknown, z,.,(;, 7;), when each equation is solved. Once 7, y is determined
for the whole region, the displacement can be calculated by the discretized equation (11.73).

So far, we have been proceeding as if the locations of crack tips x(t) and x,(t) were
known. But these locations are determined by some fracture criterion. The simplest criterion
that can be easily incorporated in the discretized formulation (11.77) is to monitor the stress
difference between the neighboring grid points that bracket the position of the crack tip. The
total stress at the point inside the crack is known to be o;'y, and that outside is determined as
ofy + 7., by solving (11.77) for the incremental stress T,y- Thus the excess of stress outside
the crack over that inside is Ty afy — o4 T,y + p. As soon as this stress difference

exceeds a certain limit S, i.e.,

y:

Tyy = Oy 00 > S (11.78)

xy xy

we presume that rupture takes place. The crack tip advances beyond the point at which
the stress difference had been exceeded, and the stress at the point is set to o;iy. The stress
difference across the crack tip may be considered as a smeared-out stress concentration. We
know from equation (11.7) that the stress concentration takes the form

K/

2w x’

G =

H(x"),

where x’ = x — vt is the distance measured from the crack tip and K’ is the stress-intensity
factor for in-plane cracks. Suppose that the crack tip lies halfway between two grid points
as shown in Figure 11.25. Then the average stress over the grid immediately outside the tip
will be

_ 1 (% K , K’
o =— —dx'=2 \
dJo ~2mx' V2rd

In Box 11.2, we introduced Irwin’s fracture criterion, which is based on the critical
intensity factor K. The critical average stress & over the grid immediately outside the tip
corresponding to K, may be written as

< (11.79)
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v}

FIGURE 11.25
Grid points are shown by
X symbols.

Das and Aki (1977a) compared a numerical solution based on the criterion for S, and
an analytic solution based on the criterion for K for the case of a semi-infinite, anti-
plane crack. Figure 11.21 shows the analytic solution as solid curves and the numerical
solution as step-like curves. The symbol T, attached to the analytic solution is the rupture
starting time 7, defined in (11.59), normalized to o/d as T, = at./d. For an anti-plane
crack the critical stress intensity factor K, may be obtained by setting v =0 in (11.22),
ie., K2=4uG. Then, from (11.59), we have Bt, = (r/2)KZ/(20},)>. The parameter
S, used to specify the numerical solution, is related to S, by 1+ S = S./ (O’SZ — aydz). If
our assumed relation (11.79) is correct, we should find the relation between T, and S is
T. = (/4% (a/B)(1+ 8)* ~ 1.07 (1 + $)2, where we take into account the assumption
USZ — 0 made in deriving (11.59). Figure 11.21 shows that equation (11.79) gives a good
approximation to the actual value for large S. For small S, the constant factor in (11.79)
must be slightly larger than 2. For the range of S from 0.5 to 5, the appropriate value of the
constant varies from 2.10 to 2.53. For a given S,, S can be increased by making the grid
length smaller.

Thus the fracture criterion for the critical stress difference S, may be approximately
the same as the fracture criterion for the critical intensity factor, which we called Irwin’s
criterion in Box 11.2. As discussed in the Box, the Irwin and Griffith criteria are equivalent
as far as the initiation of crack extension is concerned. However, for a finite rupture velocity,
the two criteria are different, and the fracture criterion by S, is not exactly the same as the
Griffith criterion, resulting in different crack-tip motions as shown in Figure 11.21.

Das (1980) extended Hamano’s discretization method to determine the slip function
for general three-dimensional motion—that is, for slip in two dimensions on a fault plane
within a homogeneous whole space, radiating a mix of anti-plane and in-plane motions into
three dimensions. In some respects the problem is simpler than the analysis of shear stress
by (11.77), and the subsequent determination of fault slip, because for the three-dimensional
problem the basic Green functions corresponding to (11.74) are simpler. These 3D Green
functions, the solutions to Lamb’s problem for a point source when both source and receiver
lie in the surface of a homogeneous half-space, become zero once the Rayleigh waves have
passed. This results in a great reduction of the memory needed to store the Green functions,
unlike the two-dimensional problem with a line source where the disturbance never ceases.
The two-dimensional problem is of course simpler in physical terms because of the reduced
number of relationships between stress and strain.
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FIGURE 11.26

Relation between shear stress and slip used by Ida
(1972) and Andrews (1976). The static friction is
o, at this upper level of friction, instability begins
and weakening occurs. For slip greater than D, stress
drops to the dynamic friction level, 0. The shaded
area corresponds to surface energy, i.e., the work
done against the cohesive force (see Section 11.1.3).
[After Andrews, 1976; copyright by the American
Geophysical Union.]

Andrews (1976) used Ida’s description of cohesive force to introduce the Griffith
criterion (Section 11.1.3) into a finite-difference calculation of the in-plane shear-crack
propagation. He assumed that traction across the fault plane is related to the slip Au by the
following formulas (see Figure 11.26):

o(Au) =0, — (0, —oy) Au/D Au < D,
(11.80)
o(Au) =04 Au=> D,

where o is the static friction, oy is the dynamic friction, and D is the slip required for stress
to drop to oy. This is an example of what has come to be called a “slip-weakening” law.
More specifically, it is a slip-weakening law with a constant weakening rate. The inelastic
work done at the rupture front in excess of the work done against the dynamic frictional
stress oy is identified as the specific surface energy (for each unit surface of newly created
crack),

G = 1(og— ay)D. (11.81)

The boundary condition on the fault plane must next be described. When the crack is

not slipping,
BaAtu -0 and |U;?_\: + 7l <o (Au);
and during slip,
aaA[M #£0 and ag,—%rxy:g(Au) Sign<8aAtu> -

With this boundary condition, the propagation of a crack expands symmetrically in both the
+x and —x directions. The results are discussed in terms of two nondimensional numbers:
L./L and (o, — 0y)/(0y — 04), wWhere o is the initial stress va and L, is the critical
half-length of an in-plane Griffith crack, which can be obtained from equation (11.16).
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Taking the limit as v — 0, the critical stress intensity factor K, will satisfy the following
equation:

=2

2v

_LE il

T 16 up? v (1_ v_z>1/2_ (1_ i)z <1_ v_2>_1/2 (11.82)
az 2[32 /32

S A4

From equation (9) of Box 11.1, the stress-intensity factor K’ is related to the crack half-
length L by K’ = (0, — 04)~/7 L. Therefore, the critical half-length L. is given by

_ Bk +n)G
(A +2u)(oy — Ud)Z.

(11.83)

C

Das and Aki (1977a) solved the same problem using Hamano’s method, with the
fracture criterion based on S, discussed earlier. In their case, L can be calculated by putting
the value of K obtained from (11.79) into K = (0 — o4)v/7 L to find

S2
L=d————. (11.84)
2(0 — 0g)?
The other parameter, (o, — o)/ (g — 04), is nothing but the parameter S used in the
discussion of Figure 11.21:
S _ 0,— 04 o, — 0y

§—_ % q_ 1= . (11.85)

The results of calculation by the two methods agree in general, and only Andrew’s result
is reproduced in Figure 11.27. There are two distinct styles of rupture propagation. If the
parameter S is greater than about 1.63, the velocity of rupture propagation is always less than
the Rayleigh-wave velocity cg, and the velocity approaches cg, as the crack length increases.
On the other hand, if S is less than 1.63, the rupture starts with sub-Rayleigh velocity.
But as the crack length exceeds a certain limit (which depends on S), the rupture velocity
exceeds the shear velocity and approaches the P-wave velocity as the crack length increases.
The critical value of S = 1.63 was obtained by Burridge (1973), using the cohesionless
fracture criterion discussed in the example of anti-plane crack propagation (see the last
part of Section 11.2.2). The cohesionless crack cannot propagate at velocities lower than
the Rayleigh-wave velocity because of its inability to sustain any stress singularity. It can
propagate with the Rayleigh velocity, at which speed the stress-intensity factor is zero.
Burridge, however, showed that even at the Rayleigh velocity, the stress ahead of the crack
at the S-wave front may exceed the static friction if S is less than 1.63. In that case, the
admissible speed of the crack tip is the P-wave velocity. In Section 11.1.2, we concluded
from the study of energetics at the crack tip that the speed of an in-plane crack cannot
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exceed the Rayleigh-wave velocity. For a cohesionless crack, the stress-intensity factor is
always zero and there is no energy flow through the crack tip. Therefore, the conclusion
from the energetics does not apply to a cohesionless crack. A more difficult question is why
the numerical solutions, which apparently involve a finite energy flow through the crack tip
(as demonstrated by the agreement with analytic solutions for such cases), show rupture-
propagation velocities exceeding that of Rayleigh waves. The answer lies in their fracture
criterion, in which the initiation of fault slip does not require an infinite stress but only a finite
stress, Thus, the stress associated with P- and S-waves propagating ahead of a crack tip can
cause the fault slip. Hence we may say that the super-Rayleigh-wave velocity propagation
is a consequence of finite cohesive forces.

The finite cohesive force has another important consequence on what happens when
the rupture propagates along a fault plane with obstacles or barriers. These barriers may be
expressed by a localized high value of S, defined in (11.78). Das and Aki (1977b) found
that three different situations can occur when a crack tip passes such a barrier, depending
on the relative magnitude of barrier strength to initial stress:

(i) If the initial stress is relatively high, the barrier is broken immediately.

(ii) If the initial stress is relatively low, the crack tip proceeds beyond the barrier, leaving
behind an unbroken barrier.

(iii) If the initial stress is intermediate, the barrier is not broken at the initial passage of
the crack tip, but eventually breaks due to a later increase in stress.

If the barrier encounter of type (i) occurs throughout the fault plane, rupture propagation
is smooth, generates a simple impulsive seismic signal, and results in a high average
stress drop. On the other hand, if the type (ii) encounter occurs at many barriers, rupture
propagation becomes rough, generates a long sequence of high-frequency waves, and ends
up with a low average stress drop. Type (iii) propagation generates seismograms with ripples
superimposed on long-period motion. The seismic radiation becomes less dependent on
direction of rupture propagation than others, because the slip on the central part of the crack
occurs more or less simultaneously, resulting in an effectively symmetric source. Similar
results were obtained by Mikumo and Miyatake (1978), who studied rupture propagation
over a fault plane with a two-dimensional nonuniform distribution of static friction.
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Thus, a variety of rupture processes can be generated by distributing a number of
barriers with different strengths on the fault plane to serve as more complex models of
actual earthquakes. The fault model with barriers is particularly important for the study
of short-period motions from a large earthquake, because it is associated with strong ground
motion in the frequency band that is most damaging to man-made structures.

Our numerical methods of solving for fault slip in this chapter have included both
finite difference methods as in Section 11.1.5, in which seismic motions are propagated
throughout a volume, and so-called boundary integral methods such as those of the present
Section 11.2.3, in which calculations of displacement and stress are confined only to the
plane of the fault itself (via (11.73) and (11.75)). Bizzani et al. (2001) have thoroughly
studied the slip distribution for two-dimensional in-plane shear rupture governed by the slip-
weakening law shown in Figure 11.26, and also by more general rate- and state-dependent
friction laws proposed by Dieterich and Ruina. They find the two numerical methods of
solving for fault slip lead to identical solutions if care is taken to ensure numerical stability
and adequate resolution. Their boundary integral method, developed by Andrews (1985),
was faster than their finite difference method.

11.3 Rupture Propagation Associated with Changes in Normal Stress

Many times in the solutions discussed above we have made use of the fact that shear
discontinuities on a planar fault surface, in a homogeneous isotropic elastic whole space,
cannot change the normal stress on the fault. See Problem 10.2. (This constancy of normal
stress does not mean that the original planar fault surface stays flat. In practice it warps
during slip in a fashion that keeps the normal stress unchanged.) The constancy of normal
stress simplifies the discussion of shearing stresses on the fault plane, since in practice we
can relate shearing stress via a coefficient of friction to the normal stress. Because the normal
stress cannot change, changes in the coefficient of friction are directly reflected as changes
in the shear stress. But this simplification is lost if the fault surface is nonplanar, or if the
fault surface is itself a material discontinuity between media with different elastic moduli,
or if the fault is shallow. In the latter case, seismic motions will be reflected from the Earth’s
free surface, back down into the source region. If the reflections reach the fault while it is
still in the process of slipping, then the normal stress on the fault will be changed in ways
that can influence the process of slip. In this section, we briefly review each of these three
possibilities for changing the normal stress.

If the fault surface is bumpy, then resistance to slip may be greater due to the possibilities
of indentation of material on one side of the fault into the other. Conceptually such a fault
can lock, and a new plane of weakness can develop nearby. Models of such an asperity can
be developed in terms of a spatially varying coefficient of friction applied over a planar fault,
so that greater shear stress is needed to accomplish slip near the location of the indentation.
But such an approach does not reproduce the fact that normal stress across the fault will
change as an asperity begins to slip. Bouchon and Streiff (1997) considered a generalized
version of the spontaneous rupture model discussed above in Section 11.2. They allowed
for nonplanar faulting by assuming that shear stress at the time of nucleation drops from its
initial static level to the value given by a dynamic coefficient of friction times the original
normal stress. For a fault with a bend, their boundary integral method allows for friction
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that varies as the dynamic normal stress changes continuously. But Tada and Yamashita
(1996) have pointed out fundamental differences in behavior for in-plane shear cracks that
are nonplanar, between cracks that change their orientation smoothly from point to point,
and cracks with an abrupt kink (discontinuous change in fault normal). They found that the
normal stress along a smoothly curved crack differs from that along a chain of line segments
connected at abrupt kinks (the chain being a discrete version of the smooth variation).

Faults that have endured numerous earthquakes over millions of years can accumulate
many kilometers of offset, bringing rocks of quite different composition—and different
elastic properties—into contact. When a new episode of slip occurs across a surface that
is also a material discontinuity, the resulting wavefields are si gnificantly more complicated
than the usual P and S body waves. For example, head waves can propagate along the
faster side of the interface, delivering energy into the slower (more compliant) medium by
refraction at a critical angle. This energy arrives earlier and from a different direction than
would be the case if slip occurred only within a homogeneous block of the slower medium.
Ben-Zion and Malin (1991) showed for the San Andreas fault, in central California, that such
head waves have sometimes been misinterpreted as body waves arriving directly from an
earthquake hypocenter, leading to erroneous estimates of the hypocenter location. Weertman
(1980) showed that for a dislocation moving along a material interface at constant speed,
the change in normal stress increases with increasing dislocation velocity up to the speed
of the S-wave in the slower medium. Andrews and Ben-Zion (1997) used a finite difference
method for two-dimensional plane strain to study slip between materials that had a 20%
contrast in elastic wave speeds, and found features similar to those predicted by Weertman.
They showed that a self-sustaining and spatially narrow pulse of slip, associated with a
tensile change of normal stress, could propagate at about the velocity of the slower S-wave
speed. The direction of propagation is always the same as the direction of slip in the slower
medium.

The phenomenon of tensile changes in normal stress has also been found for slip on
planar faults in homogenous media. These tensile changes, which can be large enough to
cause separation of the two surfaces of the fault, arise in laboratory experiments conducted
by Brune and coworkers. They used foam rubber blocks in a geometry that simulated
shallow-angle thrust faulting. Mora and Place (1994) modeled the geometry of the foam
block experiments using a numerical lattice model, and also found interface waves asso-
ciated with tensile changes in normal stress that tended to separate the fault surfaces. The
reason for such changes in normal stress is presumably the interaction between fault mo-
tions on the shallow fault and motions reflected from the free surface, which cause tensile
changes on the fault plane. Brune et al. (1993) found that the observed particle motions
show several features very different from those commonly found for planar dislocations
within a whole space. Interface waves associated with fault opening propagate updip along
the thrusting fault plane, and temporarily decouple the hanging wall from the foot wall.
Seismic energy becomes trapped in the overlying wedge, and consequently the particle
motions are asymmetrical, being far greater in the hanging wall than the foot wall. The
energy becomes increasingly concentrated toward the tip of the upper wedge—the toe of
the hanging wall—leading to what these experimenters call spectacular breakout phases
when the rupture reaches the free surface. Their results suggest that the seismic hazard of
great subduction zone thrust earthquakes, and continental shallow angle thrust faults, may
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be significantly greater than would be predicted by standard dislocation models that do not
take into account the interactions of fault rupture with a nearby free surface.

Throughout our chapters on source theory, we have focused on models that apply to
individual earthquakes. For each such model we have sought to explain how its associated
fault slip and radiated motions can be analyzed. We have avoided the obvious fact that
earthquakes occur in the setting provided by previous earthquakes. But each earthquake
changes the stress environment in which it was triggered, dropping the stress over length
scales comparable to the width and length of the fault-ruptured area. Each new earthquake,
whether large or small, occurs in the inhomogeneous initial stress established by all its
predecessors, though typically increased by tectonic loading. It is therefore of interest to
determine how the balance is maintained between large earthquakes, which presumably
tend to reduce stresses over wide regions, and small earthquakes, which introduce short
wavelength inhomogeneities into the stress field. These underlying characteristics of the
environment in which individual earthquake occur will determine the size of each new
earthquake in a sequence. The overall relationship between earthquakes of different sizes
may be governed by the principles of self-organized criticality. Earthquakes show properties
that we still do not understand. It is a challenge to bring the wide range of observed
earthquake phenomena into a complete and satisfactory framework established on basic
physical principles.
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Problems

11.1 If slip across a fault surface X is known as a function of position and time, is this
enough to determine completely the motions throughout the medium within which
the fault is situated (assuming no other source is active)? If your answer is “yes,”
then explain why this result is only of limited use in earthquake source theory. If
your answer is “no,” then describe what else must be known about the source in
order to determine the motions that it radiates.

Suppose that, instead of the slip, we know the traction at all times on the part of
the fault surface that is undergoing slip (i.e., on X(¢)). Is this enough to determine
the motion radiated away from the fault? Comment on your answer here (yes or
no) in the same fashion requested above.

11.2 For the self-similar elliptical crack described in Sections 10.1.6 and 11.1.4, show
that

a) the fault area grows like 72,

b) the average slip grows like 7,
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11.3

¢) the seismic moment grows like 3, and hence that

d) the far-field velocity seismogram is proportional to (r — t) H (t — tp) near the
arrival time t = #p.

For a semi-infinite crack described as an example in Section 11.2.2, the stress-
intensity factor K is given by

_(—%y/p' / o dx
K=" |, pwt e h =

21— x,/B)
B NETY) Vb

In that example, we derived the crack-tip motion assuming that the surface energy
G is independent of rupture velocity. Show that if instead the critical stress intensity
factor is constant (i.e., instead of G), then the crack-tip motion is given by

xXy(t) = Bt —t,) — Bt.log 1/t

This curve is shown in Figure 11.21 together with the curves corresponding to
constant G.

For an in-plane tensile crack, the rupture propagation always has velocities lower
than the Rayleigh velocity, even in the case of finite cohesive force. Confirm this
conclusion by investigating the sense of stress associated with the P- and S-wave
part of the Green function appropriate for a tensile crack.



