CHAPTER

Basic Theorems in Dynamic Elasticity

An analytical framework for studying seismic motions in the Earth must incorporate, at the
very least, the following three components: a description of seismic sources, equations
for the motions that can propagate once motion has somewhere been initiated, and a
theory coupling the source description into the particular solution sought for the equations
of motion. Tt will be useful if the theory can be simplified by taking full advantage of
our conjectures about seismic motion (though such a theory may mislead the user if the
conjectures are invalid). For example, there 1s the conjecture that two sets of small motions
may be superimposed without interfering with each other. Another conjecture is that the
seismic motions set up by some physical source should be uniquely determined by the
combined properties of that source and the medium in which the waves propagate. These
conjectures, and many others that are generally assumed by seismologists to be true, are
properties of infinitesimal motion in classical continuum mechanics for an elastic medium
with a linear stress—strain relation: such a theory will provide the mathematical framework
for almost all of this text.

Seismology is largely an observational science, so the ability to interpret seismograms
is fundamental to progress. For this reason, there is a need to know what information about
the motion in one part of a medium is enough to determine uniquely the motion that may be
observed in another part. As a practical example, we often need to know how to characterize
a seismic source (an explosion or a spontancous fault motion) and how to allow for boundary
conditions at the Earth’s free surface in order to determine the resulting motion at a network
of receivers. Fortunately, for a linear elastic medium, this problem has a definite solution,
in that prescribed source conditions (in terms of body forces) and boundary conditions
can readily be stated in forms that do enforce uniqueness for the resulting motions. After
giving a formulation of the problem (i.e., establishing notation: defining displacement.
strain, traction. body force. and stress; and stating constraints on the motion), we prove
the two fundamental theorems of uniqueness and reciprocity. Reciprocity is used together
with a Green function to obtain a representation of motion at a general point in the medium
in terms of body forces and information on boundaries. This method of representation in
elastodynamics is due to Knopoft ( 1956) and de Hoop (1958). It has many familiar parallels
in complex number theory. in potential theory, and in the theory of the scalar wave equation
for a homogeneous medium.
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Chapter 2 / BASIC THEOREMS IN DYNAMIC ELASTICITY

BOX 2.1
Examples of representation theorems

1. Il f(z) is an analytic function of the complex variable z, then

L g f@de
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where the contour integral is taken counterclockwise on any path C around the point
z. (No singularities of f are allowed inside C.) This formula is then a representation
of the function f, which allows f to be evaluated everywhere inside C provided the
values of f are known on C itself.

]

If @ (x. v, z) satisfies the Poisson equation V2¢ = —4gmp, then

oo = ], 228¥0)

where V is a volume including all of the density distribution p that contributes to ¢.
This too is a representation of ¢, but one that does not involve values of ¢ itself.

The elastodynamic representation theorem involves both the above types of rep-
resentation, and also incorporates time dependence.

It is often useful to have the equations of clastic motion referred to general orthog-
onal curvilinear coordinate systems, since, in many instances, the (curved) coordinate
surfaces are just those on which it is natural to apply a boundary condition. We derive the
displacement—stress equations and the strain—displacement equations, using the physical
components of displacement, stress, and strain in a general orthogonal system.

This chapter may seem at first sight to consist mainly of formal results—of proofs that
must be established once, by one person, to legitimize the specific problem-solving methods
expounded in later chapters. However, the reader who wishes to develop the ability to solve
problems in theoretical or applied seismology on his or her own will soon face the question
of how a problem is “set up.” That is, how does one translate the physical description of
a seismic source—and the general problem of calculating the ensuing motions at nearby
and/or distant receivers—into a specific mathematical problem? In large part, the ability
to set up such problems will stem from mastery of the representation theorem, given in
various forms by equations (2.41)—(2.43) and (3.1)—(3.3). We shall frequently refer to these
equations in later chapters.

2.1 Formulation

Two different methods are widely used to describe the motions and the mechanics of motion
in a continuum. These are the Lagrangian description, which emphasizes the study of a
particular particle that is specified by its original position at some reference time, and the
Eulerian description, which emphasizes the study of whatever particle happens to occupy
a particular spatial location. For most applications in seismology, the linear theory of
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elasticity is conceptually simpler to develop with the Lagrangian description, and this is the
framework we shall almost always adopt. Note that a seismogram is the record of motion of
a particular part of the Earth (namely, the particles to which the seismometer was attached
during installation), so it is directly a record of Lagrangian motion.

We shall work in this chapter with a Cartesian coordinate system (x, x5, x3), and all
tensors here are Cartesian tensors. We use the term displacement, regarded as a function
of space and time, and written as u = u(x, 1), to denote the vector distance of a particle at
time 7 from the position x that it occupies at some reference time 7. often taken as t = 0.
Since x does not change with time, it follows that the particle velocity is du/dt and that the
particle acceleration is d*u/dt>.

To analyze the distortion of a medium, whether it be solid or fluid, elastic or inelastic,
we use the strain tensor. If a particle initially at position x is moved to position x -+ u, then
the relation u = u(x) is used to describe the displacement field. To examine the distortion
of the part of the medium that was initially in the vicinity of x, we need to know the new
position of the particle that was initially at x + §x. This new position is x + §x -+ u(x -+ §x).
Any distortion is liable to change the relative position of the ends of the linc-clement 6x.
If this change is du, then dx + du is the new vector line-element, and by writing down the
difference between its end points we obtain

OX + du =x + 8x + u(x + x) — (x + u(x)).

Since |8x| is arbitrarily small, we can expand u(x + 8x) asu + (8x - V)u plus negligible
terms of order |8x|>. It follows that du is related to gradients of u and to the original line-

element §x via

aHl ( )
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du = (6x - V)u, or Su; =

However, we do not need all of the nine independent components of the tensor u;; to
specify true distortion in the vicinity of x, since part of the motion is due merely to an
infinitesimal rigid-body rotation of the neighborhood of x. This can be seen from the identity
u,, ;8x, (see Box 2.2 and Problem 2.2), so that equation (2.1) can

(7 j — U)X ;= E;j€ i

be rewritten as
du; = fl,(uw- + HJ,-J-)(SXJ- + %(Curl u x 8x);, 2.2)

and the rigid-body rotation is of amount %cur] u. The interpretation of the last term in (2.2) as
arigid-body rotation is valid if u!-_j-| <« 1. If displacement gradients were not “infinitesimal”
in the sense of this inequality, then we should instead have to analyze the contribution to éu
from a finite rotation—a much more difficult matter, since finite rotations do not commute
and cannot be expressed as vectors.

In terms of the infinitesimal strain tensor, defined to have components

6:’!-_’,- = %([l',‘.",- + Lirj‘f)q (23)
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BOX 2.2
Notation

We shall use boldface symbols (e.g., u. ) for vector and tensor fields. and subscripts (e.g..
1. Tyy) to designate vector and tensor components in a Cartesian coordinate system. Useful
references for the properties of Cartesian tensors are Jeffreys (1963) and Chapter 3 of
Jeffreys and Jeffreys (1972).

For unit vectors (other than v, 1. n, b). the circumflex is used (e.g.. X). Scalar products
are written as a - b, and vector products are wrilten as a x b.

Overdots are used to indicate time derivatives (e.g.. 1 = Eiu/f)z u= Eilu/EJrz). and a
comma between subscripts is used for spatial derivatives (e.g., u; ; = du i/9x;)

The summation convention for repeated subscripts is tollm\ ed lhl()ll“h()tll (e.g
ayb) + aybs + azhy = a - b). and frequent use is made of the Kronecker symbol 5 ; and lhe
dltulmlmw tensor with COMPONENts & -

ab; =

§;=0 for i#j, and §;=1 for i=j:
£ =0 ilany of i, j, k are equal,
otherwise
£133 = E317 = Ea3;
The most important properties of these symbols are then
a; = Sf-j(r‘f. Eijk”‘fbk = {(a3 b}
and they are linked by the properties
3 rﬁj, Oy

= |4 5.8

EikE mn im  Yjm km

bin bin éfm

4 =0.

Eijkpiim = é‘jfékm o ajmél;t‘ and

The second-order tensor t is symmetric if and only if il

the effect of true distortion on any line-clement dx; is to change the relative position of
its end points by ¢,;4x;. Rotation does not affect the length of the element, and the new
length 1s

|6x + Su| = V8x - 6x + 26u - 6x (neglecting &u - Su)

= \/5.\'15.\}- -+ 23”(5_\']‘&\',‘ (from (2.2), and using (curl u x §x) - §x = 0)
= |8x| (1 + €;jviv;) (to first order. if | € | 1),

where v is the unit vector 8x/ |5x|. It follows that the extensional strain of a line-element
originally in the v direction is €V v,
To analyze the internal forces acting mutually between adjacent particles within a

continuum, we use the concepts of rraction and stress tensor. Traction is a vector, being the
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FIGURE 2.1

The definition of traction T acting at a
point across the internal surface § with
normal n. The choice of sign is such that
traction is a pulling force. Pushing is in the
opposite direction, so for a fluid medium,

the pressure would be —n - T.

force acting per unit area across an internal surface within the continuum, and quantifies
the contact force (per unit area) with which particles on one side of the surface act upon
particles on the other side. For a given point ol the internal surface, traction is defined (see
Fig
the surface. and taking the limit of F/88 as 85 — 0. With a unit normal n to the surface
S. the convention is adopted that §F has the direction of force due to material on the side to
which n points and acting upon material on the side [rom which n is pointing; the resulting
traction is denoted as T(n). If §F acts in the direction shown in Fig. 2.1, traction is a pulling
force, opposite to a pushing force such as pressure. Thus, in a fluid, the (scalar) pressure is
—n - T(n). For a solid. shearing forces can act across internal surfaces, and so T need not be
parallel to n. Furthermore. the magnitude and direction of traction depend on the orientation
of the surface element § 5 across which contact forces are taken (whereas pressure at a point

]

i

]

in a fluid is the same in all directions). To appreciate this orientation-dependence of traction
at a point, consider a point P, as shown in Figure 2.2. on the exterior surface of a house.
For an element of arca on the surface of the wall at £, the traction T(n,) is zero (neglecting
atmospheric pressure and winds): but for a horizontal element of area within the wall at P,
the traction T(n,) may be large (and negative).

The forces acting upon particles in a solid or fluid medium consist not only of the
contact forces between adjacent particles, but also of (i) forces between particles that are

n;

P FIGURE 2.2
Tin) #T(n:).

n

. 2.1) by considering the infinitesimal force 8F acting across an infinitesimal area 45 of
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FIGURE 2.3
A material volume V of the
continuum, with surface S.

not adjacent, and (ii) forces due to the application of physical processes external to the
medium itself. An example of type (i) would be the mutual gravitational forces acting
between particles of the Earth. Type (ii) is illustrated by the forces on buried particles of
iron when a magnet is moved around outside the medium in which the iron is contained.
To these noncontact forces, we give the name body forces, and use the notation f(x. 1)
to denote the body force acting per unit volume on the particle originally at position x
at some reference time. Tt will often be useful to consider the special case of a force
applied impulsively to one particular particle at x = ¢ and time ¢ = 7. If this force is in
the direction of the x, -axis, it follows that f;(x, 1) is proportional to the three-dimensional
Dirac delta function § (x — &), specifying the spatial location; to the one-dimensional Dirac
delta function §(r — 1), specifying the timing of the impulse; and to the Kronecker delta
function §;,. signifying the directional property that f; = 0 for i # n. Thus the body-force
distribution in this case is given by

X D=A8X—E) 80 —1)8 (2.4)

in*

where A is a constant giving the strength of the impulse. Note that the dimensions of f,.
8(x — &), and 6(1r — 1) are, respectively, force per unit volume, 1/unit volume, and [/unit
time. The Kronecker delta is dimensionless, so A does have the correct physical dimension
for an impulse (force x time).

We are now in a position te place a constraint on the accelerations, body forces, and
tractions acting throughout a volume V with surface S (see Fig. 2.3). By equating the rate
of change of momentum of particles constituting V to the forces acting on these particles,

we find
o ou '
—]ff p_%dV:fff de—!—fj T(n) ds. (2.5)
at ;o ot / s

This relation is based on a Lagrangian description, and V and § move with the particles.
The left-hand side can thus be written as [/, p(8%u/d1%) dV, since the particle mass p dV
is constant in time.

Our first use of (2.5) is to obtain an explicit form for the functional relationship
T =T(n) and to introduce the stress tensor. Consider a particle P within the medium for
which the acceleration. the body force. and the tractions are all nonsingular. Surround this
particle by a small volume AV, and consider the relative magnitude of the three terms in

"~

S

S¢
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FIGURE 2.4
A small disc within a

stressed medium,

(2.5) as AV shrinks down onto P. The volume integrals will be of order AV, but the surface
integral is of order ffs ¢l 5 taken over the surface of AV In general such integrals are of order
(AV)>73, tending to zero more slowly than AV. After dividing (2.5) through by [[ 5. it
follows that

|/ TS|

/s —0AVYH) 50 as AV = 0. (2.6)
[#

Now suppose that AV is a disc, with opposite faces having outward normals n and —n (see
Fig. 2.4) and the edge having insignificant area. Equation (2.6) then implies the result

T(—m) =—-T(n). (2:7)

Next, take AV to be a small tetrahedron, with three of its faces in the coordinate planes (see
Fig. 2.5) and the fourth having n as its outward normal. Equation (2.6) then implies

T(M)ABC + T(—%,)OBC + T(—%,) OCA + T(—3%;) OAB
—

0 (2.8)
ABC+ OBC+ OCA+ OAB

as AV — 0. Here, the symbols A BC etc. denote areas of triangles, and one can show geo-
metrically that the components of n are given by (1, 11,.1n5) =(OBC, OCA, OAB)/ABC.
Then (2.8) and (2.7) yield

T(n) =T&;)n;. (2.9)
which is a specific and important relationship between traction T(n) and n in terms of three
tractions acting across coordinate planes. The properties (2.7) and (2.9) are trivial for a static
medium, but we have shown them to be true even during acceleration.

The stress tensor is introduced by defining the nine quantities

i = T (%),

so that 7, is the /th component of the traction acting across the plane normal to the kth axis
due to material with greater x, acting upon material with lesser x;. Thus

Tj = Iji”_,-‘- (210)
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The small tetrahedron P
OABC has three of its faces V'
in the coordinate planes, - \
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with outward normals
ff(;-(j =1.2.3). and the
fourth face has normal n.
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Our second use of (2.5) is to obtain the equation of motion of a general particle.
Applying (2.10) and Gauss’s divergence theorem to give

]f ﬂdS:ff Tyl ds = []f rf-{-.',-d‘/, (2.11)
5 5 : po

we find for a general volume V that

ff[ (Bl —Jf; — Ty dV =0, (2.12)
; i

This integrand must be zero wherever it is continuous, otherwise a volume V could be found

that violates (2.12). hence
Pty = 1 T (2.13)

which is our first form for the equation of motion.
Another constraint upon the mechanics of motion is given by equating the rate of change
of angular momentum about the origin of coordinates to the moment of forces acting on the

particles in V. Thus

;i]]f Xxpﬂc!V:][[ Xxfdva‘rf_[XdeS. (2.14)
ar v JJSV S

where X = x + u. Since 9x/dr, u x u, and d(p dV)/d¢ are all zero, the left-hand side
here is ([, X x pii dV. Using the strict interpretation of (2.13) developed in Box 2.3.
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BOX 2.3
Euler or Lagrange?

A closer look at the application of Gauss’s theorem in (2.11) shows that our Lagrangian
approach is inappropriate for the spatial differentiations in (2.11)—(2.13). The particles
constituting S at time 7 have, in general, moved from their position at the reference time 1.

. ]
f]g Tin s = [_[f\, P Ty dV.

i

s0 that

where X = x + u, and the spatial differentiation that must be conducted on points throughout
Voattime 1 is 8/ X ;. For finite motions, the exact equation for motion in the continuum is
therefore. in our notation,
o2 :
e, 0T,

o~ T ax,

yel (2.13, strict form)

The Eulerian approach instead discusses field variables directly as a function of X and ¢
(taking u to be the displacement of the particle at X and time ¢ from its position x al time
1y). and 47 would be a stress component at (X, ¢). This offers the advantage of allowing
one to work with independent variables that are natural for interpreting the right-hand side
of the equation of motion, but has the disadvantage of cumbersome expressions for the rate
of change of properties carried by the particles. For example. particle velocity v at (X, 1)
is difficult to express in terms of the displacement field u = u(X, 1). The equation for v is
given by seeing that the particle at X at time ¢ has moved to X 4+ §X at time 7 + 81, s0

vir=uw(X+ 86X, r +6r) —u(X.1).
Since v = limit of X /§1 for a fixed particle.

du; i du;
N

] v
de fixed time

TN ar e i
fixed position
is the implicit equation to be solved for v in terms of u (implicit, because components of v
appear on both sides of the equation). Once the particle velocity is found, the acceleration
of the particle at (X.7) is easily given by the material derivative 8v/dr + (v - V)v. where
¥ is the Eulerian spatial derivative, i.e., in X coordinates.

In seismology. the distinction between Lagrangian and Eulerian approaches rarely needs
to be made. since spatial fluctuations in the displacements. strains. accelerations, and
stresses have wavelengths much greater than the amplitude of particle displacements. In
this case, it makes no practical difference whether a spatial gradient is evaluated at a fixed
position (Euler) or for a particular particle (Lagrange). In this book we emphasize the
Lagrangian approach because there is then a simple exact relationship between particle
velocity and particle displacement. v = du(x. r)/df, and because a seismometer measures
the motion of the fixed particles to which it was originally attached. In fluid mechanics.
where particle displacements may not be small. there is little interest in particle displacement
as a field variable and the Eulerian approach is more useful.

A final acknowledgment: the “Eulerian™ and “Lagrangian™ approaches were both devel-
oped by Leonhard Euler.
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it follows that

E) . 5
fo g X ;T dS (from (2.14))
g

— ,[./5 &k X Ty dS (from (2.10)).

Applying the divergence theorem to this surface integral and using 9X,;/0X; =4, one

/ff EiikTjk dV =0 for any volume V.
v

implying €4 T = O everywhere, and hence that the stress tensor is symmetric:

obtains

T = Tjge (2.15)

With this fundamental result, we can finally state the formula for traction components

T =5 (2.16)
and the equation of motion as
pii, = f; + T3 e (2.17)

The spatial derivative here should be carried out with respect to X ;. but (as discussed
in Box 2.3) differentiation with respect to x; is usually adequate in seismology, and will
henceforth be assumed.

2.2 Stress—Strain Relations and the Strain-Energy Function

A medium is said to be elastic if it possesses a natural state (in which strains and stresses
are zero) to which it will revert when applied forces are removed. Under the influence of
applied loads, stress and strain will change together, and the relation between them. called
the constitutive relation, is an important characteristic of the medium. That there is such a
relation we prove below by thermodynamic arguments. The relation itself is a proper subject
for experimental determination, and Robert Hooke's measurements of “springy bodies™ led
him. over 300 years ago, to the conclusion that stress is proportional to strain. His statements
on this matter were somewhat enigmatic, as today’s concepts of traction and tensor were then
unavailable. Augustin Cauchy, in the early nineteenth century, was the first to develop many
of our modern ideas of traction, and it is clear that he understood many results that today are
more easily communicated in terms of tensors, which did not come into general use until
the twentieth century. The modern generalization of Hooke’s law is that each component
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of the stress tensor is a linear combination of all components of the strain tensor. Le., that
there exist constants oY, such that

(2.18)

ij = Cijpg®pq:
A body that obeys the constitutive relation (2.18) is said to be linearly elastic. The

quantities ¢, ;) are components of a fourth-order tensor, and have the symmetries

L= ; =T 2.19
€jipg = Cijpg (duetor; =1) (2.19)

and

(duetoe, =e, ). (2.20)

Cijgp = Cijpg ar = €pg

Itis also true from a thermodynamic argument that ¢ paij = Cijpg+ 48 We now shall show.

Suppose that an elastic body occupies the volume V with surface S. The first law of
thermodynamics states that the body possesses an internal (or. intr insic) energy, which may
change with deformations of the body, and the en ergy balance for work done on the body
is:

Rate of doing mechanical work + Rate of heating
= Ralte of increase of (kinetic + internal energies). (2213

Let us analyze each of these terms separately.
(1) The rate of mechanical work is given by

ffj f-l'ldV—l—ff T-udS
v s
— [ff f i; + (r”re,] :' dVv (from (2.16) and Gauss’s divergence theorem)
' (2.22)
:fff (pujit; + 70, ;) dV (from (2.17))
= f/f —pui; dV + ffﬁ 7€y AV (symmetry of 7;; and definition ofe;;)

(2) Let h(x, 1) be the heat flux, such that h - n is the rate at which heat is transmitted
(per unit area) in the n direction across area elements normal to n. Let Q(x. ¢) be the heat
per unit volume due to input through the boundary, so that the rate of heating is given by

 fff aav=—f[ nnas s
ar / S
Then clearly 0=-V.h.

(3) The rate of increase of kinetic energy is given by

” fff —puiu; dV. (2.24)
(
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(4) Let U be the internal energy per unit volume. Then from (2.21)—(2.24) we conclude
that

W= —h;; +7,¢

i€ij or U=8 Lyt (2.25)

If 1, 9, and ¢ ; arc measured as small perturbations away from a state of thermody-
namic equilibrium. then (2.25) is equivalent to

dU =dQ + 1;; de;;
=T dS +1;; de;; (for reversible processes), (2.26)

in which 8 is the entropy per unit volume and T is the absolute temperature. Equation (2.26)
implies that entropy and strain components are the state variables in terms of which internal
energy is completely and uniquely specified. In particular. internal energy does not depend
on the time history of strain,

Itis often useful to work with a function W of the strain components that allows the
stresses to be generated via

aw
Ty S—s 2.27)

: ‘)t’- .

€ ij

A function with this property is called a strain-energy function.
Note from (2.26) the formal result
all

i1 =13 : (2.28)

: d(’,-",-

©

If the processes of deformation are adiabatic, so that h =0 and Q = 0, then the actual
changes in U associated with changes in strain do occur at constant entropy, and we can
choose W = 1 and use (2.28). This is the situation in seismology. since the time constant
of thermal diffusion in rock ((distance)?/diffusivity) is very much longer than the period of
seismic waves (wavelength/velocity).

[t is also true that 7;; = (0F/de;;)5. where F =U — TS is the free energy per unit
volume (for which d5 = -8 47 + 7;; de;;). For deformation processes that take place so
slowly as to be isothermal. as in some tectonic processes, it is then natural to form 7;; from
changes in the free energy. and one would choose W = 7.

For all deformations such that the strain—energy function exists, we may combine its
properties with Hooke's law and find

dW
de;; =T =Cipg® g (2.29)
which implies
37w 52
- from _ W _ (2.30)

€ s ! )
Pagly Lpq . .
dep,de;;

ri(’,-f-def,q,
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Since all the first derivatives of W are homogeneous (of order one) in strain components,
and W can be taken as zero in the natural state. W itself must be homogeneous (of order
two) in the form

W=d (2.3D)

iipg CJ.';"?pq'

This quadratic is the same as 5(d;;,, +d,,,;;)e; e ... butdifferentiation of (2.31) to give 7;;

shows that (d;;,, +d ;) = ¢;;,,- hence the strain-energy function is, explicitly,

W = _%('!-J,-Mel-_’,-e,\‘, = 3T;;%ij- (2.32)
Under adiabatic or isothermal conditions, the strain—energy function is positive except for
the natural state (where W = 0), so that %c'”“e”ek! is a positive definite quadratic form.
(W = 0. because we assume the natural state is stable.)

The ¢, ;;, are independent of strain, which is why they are sometimes called “elastic
constants,” although they are varying functions of position in the Earth. The elasticity theory
used in seismology is to a large extent characterized by a preoccupation with inhomogeneous
media, particularly with a spherically symmetric medium that is everywhere isotropic.
In general, the symmetries (2.19), (2.20), and (2.30) reduce the number of independent
components in ¢;;, from 81 to 21. There is considerable simplification in the case of an
isotropic medium, since ¢ must be isotropic. It can be shown (Jeffreys and Jeffreys, 1972)
that the most general isotropic fourth-order tensor. having the symmetries of ¢, has the form

Cijt = 88y + 1108348 jy + 848 1) (2.33)

This involves only two independent constants, 2. and 1, known as the Lamé moduli.

Note that the results we have obtained in the present section are specialized to the case
of small perturbations away from a reference state in which strain and stress are both zero. In
the Earth’s interior, self-gravitation is responsible for pressures of up to around 1 megabar.
Even if one postulates a state of zero stress and strain for Earth materials, it is clear that
the results of this section cannot directly be applied in seismology. since strains due to such
pressures are not small. Using such a reference state, one must work with a theory of finite
strain. in which the stress—strain relation is nonlinear. Alternatively, one can choose the
static equilibrium configuration of the Earth, prior to an earthquake, as a reference state.
This is the usual procedure in seismology. By definition, the reference state is one of zero
strain, but now the initial stress is nonzero, and seismic motions are studied in terms of a
linear relationship between strains and incremental stresses. Thus the stress is o at zero
strain, and is ¢ + T at nonzero strain, where T;j = Cjj€» and components crfi can be of
the same order as components ¢; ;;; (~ 1 megabar).

For the present. we shall continue to neglect the effects of initial stress a'. This
simplification is justified in Chapter 8. where initial stresses arc correctly taken into account
and where a brief review is given of those aspects of the theory that need revision (Box 8.5).
To quantify the effects of self-gravitation, we shall in Chapter 8 adopt an Eulerian approach.
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2.3 Theorems of Uniqueness and Reciprocity

It is natural to introduce the discussion of uniqueness (for the displacement field u through-
out a body with volume V and surface §) with some general remarks concerning the ways
in which motion can be set up. Because the displacement is constrained to satisfy (2.17)
throughout V', the application of body forces will generate a displacement field, as will the
application of tractions on the surface §. We shall show that specification of the body forces
throughout V. and tractions over all of S, is enough to determine uniquely the displacement
field that will develop throughout V' from given initial conditions. An alternative way to
specify the influence of § on the displacement field is to give a boundary condition (on S)
for the displacement itself, instead of for the traction. For example, S might be rigid. It might
seem at first that the traction on S and the displacement on S are independent properties
of the displacement field throughout V. This is not so, however, and it is important for an
intuitive understanding of Sections 2.3-2.5 to appreciate that traction over § determines the
displacement over S, and vice versa.

2.3.1 UNIQUENESS THEOREM

The displacement u = u(x. 1) throughout the volume V with surface § is uniquely deter-
mined after time 1, by the initial values of displacement and particle velocity at 7, throughout
V:and by values atall times 1 = 1, of (i) the body forces f and the heat Q supplied throughout
V' (ii) the tractions T over any part S, of S; and (iii) the displacement over the remainder
S, of §, with §) + 5, = §. (Either of S, or 5, can be the whole of §.)

PROOF

Suppose u; and u, are any solutions for u that satisfy the same initial conditions and are
set up by the same values for (i)—(iii). Then, using linearity, the difference U =u, — u, is
a displacement field having zero initial conditions, and is set up by zero body forces, zero
heating, zero traction on S}, and U =0 on §,. It remains to prove that U = 0 throughout V
for 1 > 1.

From (2.22), the rate of doing mechanical work in the displacement field U is clearly
zero throughout V and §; and S, for r > 7. The last equality in (2.22) can be integrated
from 7, to 7, and, together with the zero initial conditions and the use of a strain—energy
function (U involves adiabatic changes), it follows that

’ | o |
[/j; ;pU[LJ,' dv + -/\ff\’ g(li’jﬁ"U’.-jUk-l’ dV =0.

Both the Kinetic and strain energies are positive definite, so that Uf =0fort =4, Butl, =0
at 7 = t,, and hence U = 0 throughout V forr > Iy-
2.3.2 RECIPROCITY THEOREMS

We shall state and prove several general relationships between a pair of solutions for the
displacement throughout an elastic body V.



2.3 Thecrems of Uniqueness and Reciprocity

BOX 2.4
Use of the term “homogeneous™ as applied to equations and boundary conditions

The equation for elastic displacementis L(u) = I, where L is the vector differential operator
defined on the components of u by

(Lw)); = pii; — (¢t ) -

If body torces are absent, then the equation L(u} = 0 for u is said to be homogeneous. A
homogeneous boundary condition on the surface § is one for which either the displacement
or the traction vanishes at every point of the surface. If a solution to the homogeneous
equation is multiplied by a constant. the result is still a solution (unlike the outcome of
multiplying a solution to the inhomogeneous equation, L(u) =f with f 7= 0. by a constant).

This terminology is reminiscent of linear algebra, for which a system of n equations
in 7 unknowns. in the form Ax = 0. is also said to be homogeneous. Here, x is a column
vector and A is some n x n matrix. It is well known that nontrivial solutions (x # 0) can
exist, but only if A has a special property (namely. a zero determinant). The corresponding
result in dynamic elasticity is that motions can occur throughout a finite elastic volume V
without any body forces and with a homogeneous boundary condition over the surface of
V. These are the free oscillations or normal modes of the body, which can occur only at
certain frequencies. See Chapter 8.

Suppose that u = u(x, 1) is one of these displacement fields, and that u is due to body
forces £ and boundary conditions on S and initial conditions at time ¢ = 0. Let v =v(x. 1)
be another displacement field due to body forces g and to boundary conditions and initial
conditions (at r = 0) which in general are different from the conditions for w. To distinguish
the tractions on surfaces normal to n in these two cases, we shall use the notation T(u, n)
for the traction due to the displacement u and, similarly, T(v,n) for the traction due
to v.

The first reciprocal relation to note between u and v is

f[ (f—pﬁ}-vdv+f[ Tu.n)-vdS
v &
=ff (g—pi?)'un’VJrff T(v.n) -udS.
1% s

This result is due to Betti. It can easily be proved by substitution from (2.17) and (2.16)
and then applying the divergence theorem to reduce the left side to [ff;, CijkrVi ji s AV
Similarly, the right-hand side reduces to [}, ¢;;5u; ;v ; dV, and (2.34) follows from the
SYMMELry ¢; 4y = Cpyij

Note that Betti’s theorem does not involve initial conditions for u or v. Furthermore,
it remains true even if the quantities u, ii. T(u.n), and f are evaluated at time 7| but
v. V. T(v.n), and g are evaluated at a different time f,. If we choose fy=randt; =71 — 1

(2.34)
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BOX 2.5
Parallels

A rearrangement of Betti’s relation (2.34) gives

ff {z.'f((',i.k,rrg__,)‘} - rfiia'iikfllk_,)_j} dV = ff fv,T(u.n) —uw, T.(v,n)} dS.
% : ‘ 5

This is a vector theorem for the sccond-order spatial derivatives oceurring in the wave
equation of elasticity. which is analogous to Green's theorem

) 5 { A
ff/ (V- —dV-y) dV :[f (,,;,fi’ fcf)ij-) ds
A s dan an

for scalars and the Laplacian operator. Green's theorem is a working tool for studying
inhomogeneous equations, such as V¢ = —4mp, and we shall use Betti’s theorem for the
elastic wave equation. in which the inhomogeneity is the body-force term.

There are many further analogies between Dirichlet problems (for potentials that are
zero on §) and elasticity problems with rigid boundaries; and between Neumann problems
(d¢p/on =) on §) and traction-free boundaries.

and integrate (2.34) over the temporal range 0 to 7, then the acceleration terms reduce to
terms that depend only on the initial and final values. since

] plu(n) - v(t — 1) —u(t) - V(r — 1)) dt
0

R
:pj {—){1'1(:‘)-v(rf?‘)-%ll(f)""’(1'*1’)}(1r

n ot
=p () - v(0) —a(®) - v(z) +u(r) - v(0) — u(0) - ¥(1)} .

If there is some time 7, before which u and v are everywhere zero throughout V' (and
hence u = v = 0 for r < g,;). then it follows that the convolution

f' pliu(s) - viz — 1) —ua(r)-v(r — 1} de

is zero. We deduce from Betti’s theorem the important result. for displacement fields with
a quiescent past, that

o]
j di ff[ fulx,7) - gix.t —1) —vix.t —1) - f(x. )} dV
—60 4V

(2.35)

-

:f di [[ vixet — 1) - Tu(x. ).n) —u(x, 1) - T(v(x.T — 7). n)} dS.
e lo) JJ S
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2.4 Introducing Green’s Function for Elastodynamics

A major aim of this chapter and the next is the development of a representation for the
displacements that typically occur in seismology. The representation will be a formula
for the displacement (at a general point in space and time) in terms of the quantities that
originated the motion. and we have seen (in the uniqueness theorem) that these are body
forces and applied tractions or displacements over the surface of the elastic body under
discussion. For earthquake faulting, the seismic source is complicated in that it extends
over a finite fault plane (or a finite volume) and over a finite amount of time, and in general
involves motions (at the source) that have varying direction and magnitude. We shall find
that the representation theorem is really nothing but a bookkeeping device by which the
displacement from realistic source models is synthesized from the displacement produced
by the simplest of sources—namely, the unidirectional unit impulse, which is localized
precisely in both space and time.

The displacement field from such a simple source is the clastodynamic Green function.
If the unit impulse is applied at x = £ and ¢ = 7 and in the n-direction (see (2.4). taking
A = unit constant with dimensions of impulse), then we denote the ith component of
displacement at general (x,7) by G, (x.1: &, 7). Clearly. this Green function is a tensor
(we shall work throughout with Cartesian tensors, and therefore do not distinguish between
tensors and dyadics). It depends on both receiver and source coordinates. and satisfies the

cquation

d
G, =8, 8x — )8 — ) + —
ax

g2 i T_]G.Fm (2.36)

throughout V. We shall invariably use the initial conditions that G(x.¢: &, 1) and
dG(x, 1: &, 1)}/dt are zero for ¢+ < 7 and x # £. To specify G uniquely it remains to state
the boundary conditions on S, and we shall use a varicty of different boundary conditions
in different applications.

If the boundary conditions are independent of time (e.g., § always rigid), then the time

origin can be shifted at will, and we see from (2.36) that G depends on ¢ and t only via the
combination ¢ — 7. Hence

Gx. nED=Gxt—1,80)=G(x,—1: &, —1), (2.37

which is a reciprocal relation for source and receiver times.

If G satisfies homogeneous boundary conditions on §, then (2.35) can be used to
obtain an important reciprocal relation for source and receiver positions. One takes f to
be a unit impulse applied in the m-direction at x = £, and time ¢ = 7. and ¢ to be a unit
impulse applied in the n-direction at x = &, and time 1 = —7,. Thenu;, = G,,,(x,1: &, 7))
and v; = G, (X. 1: &5, —15). so that (2.35) directly yields

Gmn(él‘ T+ 15 é I Tl) = Gmn(i ERI 62‘ —T). (2.38)
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Choosing 7, = 7, = (). this becomes
Gip(€a: T8 50) =G (8 |, T3E5:0), (2.39)
which specifies a purely spatial reciprocity. Choosing T = 0 in (2.38) gives
Gona 11D =G, (&, —11: &5, —T5), (2.40)

which specifies a space—time reciprocity.

The actual computation of an elastodynamic Green function can itself be a complicated
problem. We shall take up this subject in later chapters, beginning in Chapter 4 with the
simplest of elastic solids (homogeneous, isotropic, infinite) and moving on to the case of
large separation between source and receiver in inhomogeneous media.

2.5 Representation Theorems

If the integrated form of Betti’s theorem, our equation (2.35). is used with a Green function
for one of the displacement fields. then a representation for the other displacement field
becomes available.

Specifically. suppose we are interested in finding an expression for the displacement u
due both to body forees f throughout V and to boundary conditions on 5. We substitute into
(2.35) the body force g;(x.1) =3,, §(x — &) (¢). for which the corresponding solution is
v (X.1) = G, (x.1:£.0), and find

OO
u,(&. t)= j dt /f [ )G, (x.t —1;E,0)dV
—20 4

—|—f‘ dt f[{Gm(X.r —t:&. 0T (u(x. t).n)
—00 h

— (X, 1)(‘[-}-Mierk,;_I(x, T—1:E.0)}dS.
Before giving a physical interpretation of this equation, it is helpful to interchange the
symbols x and ¢ and the symbols ¢ and 7. This permits (x. 7) to be the general position and

time at which a displacement is to be evaluated, regarded as an integral over volume and
surface elements at varying & with a temporal convolution. The result is

o0
u”(x.r):[ dt [f Si&.)G,, (&t —:x,0) dV (&)
—00 o vV

-~ ' (2.41)
+ dr G &t —t:x, )T (u(&, 7),n)

-0 vy
= H!'(é. r)(‘f.f;(l'”jcl,\'ﬂ.l’(é' L —T; X, 0)} dS(é).

This is our first representation theorem. It states a way in which the displacement u
at a certain point is made up from contributions due to the force f throughout V. plus



2.5 Representation Theorems

contributions due to the traction T(u, n) and to the displacement u itself on S. However,
the way in which each of these three contributions 1s weighted is unsatisfactory. since each
involves a Green function with source at x and observation point at &. (Note that the last
term in (2.41) involves differentiation with respect to £,.) We want x to be the observation
point, so that the total displacement obtained there can be regarded as the sum (integral)
of contributing displacements at x due to ecach volume element and surface element. The
reciprocal theorem for G must be invoked, but this will require extra conditions on Green's
function itself, since the equation G, (£.t — 1:X,0) = G, (x. 1 — 7: £, 0) (see (2.39)) was
proved only if G satisfies homogeneous boundary conditions on S, whereas (2.41) is valid

nt

for any Green function set up by an impulsive force in the n-direction at ¢ =xand r =1.
We shall examine two different cases. Suppose, first, that Green's function is deter-

. . . P . iai sop . Lrigid
mined with S as a rigid boundary. We write G" for this functionand G. = (£.¢ — 7:%,0) =

0 for & in 5. Then (2.41) becomes
~ . rigid ) ,
n, (X, 1) = di fil0)G,; Wit— pif 1) dV
—0 V

4 H 1ai .
—f di [f Ui (&, T)E un j— G (x, 1 — T1€,0)) dS.
s . Mg,

Alternatively, we can use G™¢ a5 Green's function, so that the traction
c,j“nj(EJ/B&;)GEF({.r — 7:x,0) is zero for € in S, finding

(2.42)

il = ] di ff Filg, ©)C™8 0, t —7; £,0) 4V
- ‘ (2.43)

+f dt ff Gt — v &, DT (u(E, v); n) 48
—00 s

Equations (2.41)—(2.43) are all different forms of the representation theorem and each
has its special uses. Taken together, they seem to imply a contradiction to the question of
whether u(x. 1) depends upon displacement on § (see (2.42)) or traction (see (2.43)) or both
(see (2.41)). But since traction and displacement cannot be specified independently on the
surface of an elastic medium. there is no contradiction. In (2.41), the Green function is not
completely defined.

The surface on which values of traction (or displacement) are explicitly required has
been taken, in this chapter, as external to the volume V. It is often useful instead to take
this surface to include two adjacent internal surfaces, being the opposite faces of a buried
fault. Specialized forms of the representation theorem can then be developed, which enable
one to analyze the earthquakes set up by activity on a buried fault. This subject is central to
earthquake source theory, taken up in Chapter 3 and developed much further in Chapters 10
and 1 1.

So far, we have considered only Cartesian coordinate systems. In practice. the seismol-
ogist is often required to use non-Cartesian coordinates that allow the physical relationship
between components of displacement, stress, and strain to be simplified for the geometry of
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a particular problem. We do this because it is often found that a boundary condition must be
applied on a surface on which a general curvilinear coordinate is constant. Many texts derive
formulas in general orthogonal coordinates for vector operations such as grad. div, curl. and
V<, but rather more is needed to analyze the vector operations required in elasticity. as we
next discuss.

2.6 Strain—-Displacement Relations and Displacement-Stress Relations
in General Orthogonal Curvilinear Coordinates

Continuing with the notation developed in Box 2.6, we shall first obtain relations between
strain components ¢/ and displacement components «” that generalize the usual Carte-
stan result e;, = %(6:{,—/().\}- + du;/dx;). By eP?, we merely mean the components of the
Cartesian second-order tensor e, referred to rotated Cartesian axes, which are defined (at
the point of interest) to lic along the directions n', n?. n*. Thus we emphasize the physical
components of strain. rather than the general tensor components (which may not even have
the dimensions of strain). Our problem is to express ¢”? in terms of derivatives (with respect
to ¢!, 2, %) of the physical components of displacement also resolved along n', n®. n': the
difficulties that arise are due (a) to spatial changes in the scaling functions /', h2, 7. and
1

(b) to spatial changes in the directions n', n”, n°.

Direction cosines of the rotated Cartesian axis along n” are (!, n! . n?)
to the Cartesian axes X, X,. X3 (which are in the same fixed direction at every point).
Therefore, from the fundamental transformation property of Cartesian vector and tensor
components,

, referred

(summation is retained for repeated subscripts) (2.44)

45

dx; f)-\‘j du, N d“\,—

f— (from (3) in Box 2.6; no summation over superscripts)

delP ded dct de?P

] (uf ax; ) E) ( 1 dx, ):I
s e — [ —
ded \ P der “act \ P der

dx; du, dx; du, . . . ) .
— (reversing the chain rule in the previous line)

1 [ d (1.1,- &)_\‘!-) a ( ] &3,\'5)
T = —— | —u;— | —
2h? | de? \ 19 dcY def \ hh ded
du’ 1 du? 1 L g , L a
= — _ S——
2h4 ded 2hP der 2

n, +——n (from (3) in Box 2.6, and (2.44))
e ded t 0 RP der !

ht 9c4 he deP




2.6 Strain-Displacement Relations and Displacement-Stress Relations

BOX 2.6
General properties of orthogonal curvilinear coordinates

Consider a point al the vector position X to be specified by three parameters, el e?, ¢, That
is, each of the three components of x (in some Cartesian coordinate system) is a scalar
function of the ¢:

We suppose that these functions x; have continuous derivatives and that there are inverse
functions

e =P (i, An,is) (p=1,2,3 or RS

so that the equation ¢ = constant can be thought of as a coordinate surface for cach p.
and these three surfaces intersect in pairs on lines along which only one of the ele? cdis
varying. We use superseripts [or quantities identified with the general curvilinear systent.

Let n” be the unit normal to the coordinate surface ¢ = constant, and suppose x and
X -+ dx both lie in this surface. Then ¢” (x) = ¢” (x + dx). and hence dx - Ve =0, using the
Taylor expansion of ¢ (x + dx). Since dx is any line element within the surface. it follows
that Ve is normal to ¢ = constant, and Ve must be parallel to nf.

Let the length of vector Ve be 1/ /7 (a scaling factor). Then

fTe= v (1

(We drop the summation convention for superscripts, but retain it for subscripts, these being
related to the original Carlesian system.)
We shall assume that ¢!, ¢2. ¢ form a right-handed orthogonal system. i.e.. that

n” - n? =48 (the Kronecker delta), (2)

and thatn® = n' x n?,
Using n/" for the ith Cartesian component of n . we can now obtain an important relation

between n? and dx/dc”, as follows:

Jx ox dev
n’=n"% =p’ L = all (the chain rule)
B ! ax, Z b e ix;
q
n;oox M 9x
Pty o -
= n, — — (from (1) = from (2))
" ha ded ‘ ? he et ¢
and hence
n’ = L ﬂ 3
ht acP

A small change ¢x in position is associated with a small change in each of coordinates
2 v . . ~ . . .
e, Fbydx= Zp(dx/dc”]dc"’. and the magnitude of this change is given by

" i Ix
(ds)> =dx-dx= %dc”’ 50 r;fqtu-‘f
ac ac
o

n

4

= (h e £ deD + (P ded) (from (3) and (2)). (4)

(continued)
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BOX 2.6 (continued)

This result leads to onc of the quickest ways of actually finding the scaling functions:
the Euclidean distance associated with increment d¢! along n' is /'de'; and similarly for
7% and 7,

In Section 2.6, we need formulas for derivatives of the type dn”/d¢¥ in terms of the
undifferentiated normals. From (2) and (3), the equations to be satisfied are

dn? on’” = e .
. — 4pf. — =0 (18 different scalar equations)
de’ e’
i d ©)
L (h'n?) = L (hn%) (3 nontrivial vector equations).
ded dc?

The above are 27 different scalar equations for the 27 scalar unknowns in én” /8¢9, and
hence are exactly enough to determine the solution. In vector form, this solution is

an”  nY ahd W[nlahf’ n’ gh? n3c’)lzf’:|
P L LY o .

= —_— (6
det  hP JeP A del  h? e B3 el 4

as may be verified by direct substitution back into (3).

In this form, we can use the final equation of Box 2.6 to obtain

; g . ; ¢ 1l app 2anp 3
er”if:l h_l)i (M)+£i(ﬂ)J+5‘nr Li‘lﬂjﬁf_ﬁ%_i_‘%y . (2.45)
2 Lh9 dcd \hr hr acr \ hd hd | Al el b2 ac: B3 9ed

in which all reference to the Cartesian system (x,, x,. x3) has at last been eliminated. Only
the first square bracket is required for the off-diagonal components (p # ¢), but for a typical
diagonal companent (2.45) reduces to, e.g.,

n_ 1 du! w? k! w k!

i — SR D i s
htacl  R'h2 e h3h! ac?

(2.46)

To obtain the displacement—stress relations for general orthogonal components of u
and 7, we follow steps similar to the derivation of pii; = 7;; ; given in Section 2.1 for fixed
Cartesian directions. The principal difficulty lies in interpreting [f; T ¢S, the integral of
traction acting across the surface S with volume V. With v as the outward normal on d S,

T.(v)dS = T ds

- E r”‘hzfn?u,dS (transformation to components in rotated Cartesians)
P

— E r"”"nf)v‘f dSs,

P

where v? is the component of the normal to d S, resolved along n?.




2.6 Strain-Displacement Relations and Displacement-Stress Relations

¢9 = constant

ds

e

(a)
FIGURE 2.6
The projection of d§ onto the surface o1 — constant. The resulting area on the coordinate surface is

w9 dS. (a) Shown here is d S as part of the surface of V. (b) The projection of d S, in broken outline.
onto the coordinate surface ¢ = constant.

Now 14 d S is the projection of d S onto the surface ¢4 = constant (see Fig. 2.6), so that
Dl dS = h2h3 de? de; similarly for v? dS and v? dS. It follows that

ff T:d8= fo [t”ln h2h3dc? + TP nfh‘h ded de!

+ rf"‘nf.jh 2 det de?)

‘} Y 2 e a 2l ?
= Z fjf _{—(rf”rlfla‘/r“) - _T,(T'”_Iljhjhl)
> v Loc! ' de?

0 »
—0——‘{1'”":1;" h '1‘12)} de' de? de

dc

But the physical volume element dV is h'2h3 de' de* de., so from steps parallel to the
derivation of the equation of motion given in St‘,(.tl()ﬂ 2.1. we find here that

~

9%u hih 23 )
w4 P n . (2.47
2 ai- hlh PAVETE Z act ( hd !
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Again, the derivative 9n” /dc? is needed (see (6) in Box 2.6), and by resolving (2.47) along
direction n' we find

82”[ ‘ | d L1523 a L2 a 31, 1,2
h—=f +———— | — (0 h Y+ — (" h)+ —("h'h)
¢ arr hns Lh" de? ded
) ) (2.48)
12 an! 3 op! 22 gh? 3 gnd
B2 ac? 3l acd hn? ae' W3R gel

5% 3 cuy w3 i = 5 s i .
Similar results for pii= and pii” can be found from a permutation of superscripts in (2.48).
The stress—strain relation. 7;; = ¢;;,€;,. becomes

=55 ; 90
T = /_5,-1( vk 21 i (2.49)
in isotropic media. We have used (2.33) here: & and y are (in general) functions of position,
and ¢, = ¢y + @57 + 35 is the volumetric strain. Equation (2,49) is expressed in terms
of components in the fixed-direction Cartesian system, but the corresponding result for
physical components in the general orthogonal system has the same form. It is

P = j5rd Z e 4+ 2uel, (2.50)

since isotropy of the medium implies ¢4 = € pgrs- ANd we can again use (2.33). The only
difference in the form of (2.49) and (2.50) is due to our using a summation convention for
subscripts but not for superscripts.

Applications of (2.46), (2.48), and (2.50) are common in spherical polars (1, 0. ¢). for
which the scaling functions /', 12, ¥ become, respectively, 1, r.r sin #; and, in cylindrical
polars, (r. ¢, z) with scaling functions 1, r, 1. In Chapter 4 we shall use orthogonal curvi-
linear coordinates associated with the wavelronts and rays that emanate from a point source
in an inhomogeneous isotropic medium. Our convention of superscripts is convenient for
the derivation of (2.45)—(2.50). but in applications the superscripts are usually replaced
by subscripts that directly indicate the coordinate of interest. Thus. if (¢!, ¢2. ¢?) are the
spherical polars (r, 8, ¢). one refers to ¢'? as €9, to u’ as iy, and to n’ as 6.
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Problems

2.1

[
2

2
[

Show that the displacement equation for infinitesimal motion in an elastic aniso-
tropic medium is

pil; = fi + (¢;jptty ) -

If the medium is homogeneous and isotropic, show that this displacement equation
becomes

pii; = fi + (A + B gty .

The above two equations are the ith Cartesian component of a vector equation.
Show that this vector equation, for the homogeneous isotropic medium, is

pu=Ff+ (A +21)V(V-u) — 1wV x (V x u).
From the expression for ¢, k€ i Box 2.2, show that
Eijk€itm = S_HSAWJ - S_im{skf and Fi_,ikgjl'm = (Simﬁfﬂ' - 6(13.('”"

For an isotropic elastic solid in which the stress—strain relation is T =Aey b +
2jue; ;. show that the strain-stress relation is

o & B

2pe =————1,, 8. 41, .

K 30+ 2u ke Y

What happens to the stress in a body if temperature is raised at fixed strain? Does
the stress obey Hooke's law (2.18) or must this be modified in some way? (Recall
that seismological applications of (2.18) are usually for adiabatic loading.)
We have shown how the displacement field u(x. 1) for an elastic body is given
uniquely (e.g.. by applied body forces and tractions). Show that body forces and
tractions are given uniquely once u(x. 1) is known everywhere. (A proof “by
construction™ is very quick and simple.)
Do the relations (2.21)—(2.25) change if stress depends on strain rate (e.g.. for a
viscous medium)?
Obtain the traction due to displacement field u acting on area elements normal to
n, in the form

3]
Tu.n) =iV -un+ pu (23—“ +nx (V x u)) .
an
du

— =(n-V)u.
dan
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2.8 The traction T in the previous question is a function of position x. in the sense that

[
p=

2.10

T =T(u(x).n).

a) Modify our derivation of (2.7) to show that traction is a continuous function of
position, in the sense that

Tx4+6x) —T(x) >0 as x— 0,

provided éx is taken parallel to the direction n that defines the orientation of
area elements on which traction is evaluated.

b) Consider a book resting on a flat table. Ts it true that traction is a continuous
function of position on the surface of the table?

¢) Check that your answers to a) and b) are not in conflict.

d) Show that t _. 7., 7._ are continuous functions of z in any medium, but that
7.. need not be continuous in the x- or y-directions; and that t, ., 7., and 7,
need not be continuous in the z-direction.

Fora point at pressure P ina fluid. the stress tensor is isotropic and has components

T;; = —P9;;. To emphasize the differences between stresses that are possible in a

solid and those that are present in a fluid, it is convenient to define deviatoric
7

—_ 1 I a3 viatoric strains by e.. — le Lo

stresses T by T = 3Tl + T and deviatoric strains by e,; = 3¢S + €

Show then that the strain energy U in an isotropic elastic medium is given by
U=

5 2 P4
[+ e e, + Z;queu |.

=

Show that e;; is the change in volume per unit volume (i.c., the volumetric strain).
Hence U can be regarded as a sum of dilatational energy. %(l + %u)c)h{f“. and
shear strain energy f-““;_;‘(’u' Why must X + %u (often called the bulk modulus,
denoted by «) and g be positive? Is it natural to call & the compressibility or the

!

incompressibility?

Consider two points. x and €. in an elastic medium, and let the unit vectors n
and v specify particular directions at x and £, respectively. Show first that a unit
impulse in the v direction at ¢ leads to a displacement at x whose component in
ip(x.7:£.0)v . Then show that this displacement
component equals the displacement component in the v direction at & caused by a
unit impulse in the n direction at x. (This result generalizes the reciprocity result
given in (2.39). which was for an impulse taken along one of the coordinate axes
and a displacement component also along a coordinate axis. The reciprocity is true

the n direction is given by n; G

for arbitrary directions n and v.)



